論文の概要: JNLP Team: Deep Learning Approaches for Legal Processing Tasks in COLIEE
2021
- arxiv url: http://arxiv.org/abs/2106.13405v1
- Date: Fri, 25 Jun 2021 03:31:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-28 13:09:01.532964
- Title: JNLP Team: Deep Learning Approaches for Legal Processing Tasks in COLIEE
2021
- Title(参考訳): JNLPチーム:COLIEE 2021における法律処理タスクのためのディープラーニングアプローチ
- Authors: Ha-Thanh Nguyen, Phuong Minh Nguyen, Thi-Hai-Yen Vuong, Quan Minh Bui,
Chau Minh Nguyen, Binh Tran Dang, Vu Tran, Minh Le Nguyen, Ken Satoh
- Abstract要約: COLIEEは、自動コンピュータ化された法律テキスト処理における毎年のコンペティションである。
本稿では,法律文書処理における深層学習の手法と実験結果について報告する。
- 参考スコア(独自算出の注目度): 1.8700700550095686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COLIEE is an annual competition in automatic computerized legal text
processing. Automatic legal document processing is an ambitious goal, and the
structure and semantics of the law are often far more complex than everyday
language. In this article, we survey and report our methods and experimental
results in using deep learning in legal document processing. The results show
the difficulties as well as potentials in this family of approaches.
- Abstract(参考訳): COLIEEは、自動コンピュータ化された法律テキスト処理における毎年のコンペティションである。
自動法的文書処理は野心的な目標であり、法律の構造と意味論は日常言語よりもはるかに複雑であることが多い。
本稿では,法律文書処理における深層学習の方法と実験結果について調査・報告する。
結果は、この一連のアプローチの難しさと可能性を示している。
関連論文リスト
- InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - Judgement Citation Retrieval using Contextual Similarity [0.0]
本稿では,自然言語処理(NLP)と機械学習技術を組み合わせて,訴訟記述の組織化と活用を促進する手法を提案する。
提案手法は,教師なしクラスタリングと教師付き引用検索の2つの主要な目的に対処する。
我々の手法は90.9%という驚くべき精度を達成した。
論文 参考訳(メタデータ) (2024-05-28T04:22:28Z) - CAPTAIN at COLIEE 2023: Efficient Methods for Legal Information
Retrieval and Entailment Tasks [7.0271825812050555]
本稿では,COLIEE 2023コンペティションにおけるタスク2,タスク3,タスク4の対応戦略について概説する。
提案手法は,最先端のディープラーニング手法の活用,ドメイン特性の観察に基づく手法の設計,厳密なエンジニアリングプラクティスと方法論を競争に適用することであった。
論文 参考訳(メタデータ) (2024-01-07T17:23:27Z) - NeCo@ALQAC 2023: Legal Domain Knowledge Acquisition for Low-Resource
Languages through Data Enrichment [2.441072488254427]
本稿では,ベトナムのテキスト処理タスクに対するNeCo Teamのソリューションを,ALQAC 2023(Automated Legal Question Answering Competition 2023)で紹介する。
法的な文書検索タスクでは,類似度ランキングと深層学習モデルを組み合わせた手法が採用されているが,第2の課題では,異なる質問タイプを扱うための適応的手法が提案されている。
提案手法は, 競争の両課題において, 法的分野における質問応答システムの潜在的メリットと有効性を示す, 卓越した結果を達成している。
論文 参考訳(メタデータ) (2023-09-11T14:43:45Z) - Miko Team: Deep Learning Approach for Legal Question Answering in ALQAC
2022 [2.242125769416219]
ALQAC2022(Automated Legal Question Answering Competition)において,効率的な深層学習に基づく法文書処理手法を導入する。
本手法は,XLM-RoBERTaモデルに基づいて,多数の未ラベルコーパスから事前学習を行い,そのタスクを微調整する。
実験結果から,本手法は限定ラベル付きデータを用いた法的な検索情報処理に有効であることがわかった。
論文 参考訳(メタデータ) (2022-11-04T00:50:20Z) - An Uncommon Task: Participatory Design in Legal AI [64.54460979588075]
われわれは10年以上前に行われた法律分野における、注目に値する、未調査のAI設計プロセスについて検討する。
インタラクティブなシミュレーション手法によって,コンピュータ科学者と弁護士が共同設計者になれることを示す。
論文 参考訳(メタデータ) (2022-03-08T15:46:52Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - A Survey of Deep Learning Approaches for OCR and Document Understanding [68.65995739708525]
我々は、英語で書かれた文書の文書理解のための様々な手法をレビューする。
文献に現れる方法論を集約し,この領域を探索する研究者の跳躍点として機能させる。
論文 参考訳(メタデータ) (2020-11-27T03:05:59Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。