論文の概要: CAPTAIN at COLIEE 2023: Efficient Methods for Legal Information
Retrieval and Entailment Tasks
- arxiv url: http://arxiv.org/abs/2401.03551v1
- Date: Sun, 7 Jan 2024 17:23:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 18:12:26.035311
- Title: CAPTAIN at COLIEE 2023: Efficient Methods for Legal Information
Retrieval and Entailment Tasks
- Title(参考訳): CAPTAIN at COLIEE 2023: 法律情報検索と細部業務の効率的な方法
- Authors: Chau Nguyen, Phuong Nguyen, Thanh Tran, Dat Nguyen, An Trieu, Tin
Pham, Anh Dang, Le-Minh Nguyen
- Abstract要約: 本稿では,COLIEE 2023コンペティションにおけるタスク2,タスク3,タスク4の対応戦略について概説する。
提案手法は,最先端のディープラーニング手法の活用,ドメイン特性の観察に基づく手法の設計,厳密なエンジニアリングプラクティスと方法論を競争に適用することであった。
- 参考スコア(独自算出の注目度): 7.0271825812050555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Competition on Legal Information Extraction/Entailment (COLIEE) is held
annually to encourage advancements in the automatic processing of legal texts.
Processing legal documents is challenging due to the intricate structure and
meaning of legal language. In this paper, we outline our strategies for
tackling Task 2, Task 3, and Task 4 in the COLIEE 2023 competition. Our
approach involved utilizing appropriate state-of-the-art deep learning methods,
designing methods based on domain characteristics observation, and applying
meticulous engineering practices and methodologies to the competition. As a
result, our performance in these tasks has been outstanding, with first places
in Task 2 and Task 3, and promising results in Task 4. Our source code is
available at https://github.com/Nguyen2015/CAPTAIN-COLIEE2023/tree/coliee2023.
- Abstract(参考訳): 毎年、法律文書の自動処理の進歩を促進するために、法律情報抽出・販売競争(COLIEE)が開催されている。
法律文書の処理は、法律言語の複雑な構造と意味のために困難である。
本稿では,COLIEE 2023コンペティションにおけるタスク2,タスク3,タスク4の対応戦略について概説する。
提案手法は,最先端のディープラーニング手法の活用,ドメイン特性の観察に基づく手法の設計,厳密なエンジニアリングプラクティスと方法論を競争に適用することであった。
その結果、タスク2とタスク3に第1位、タスク4に第4位が期待できる結果となり、これらのタスクのパフォーマンスは傑出したものとなった。
ソースコードはhttps://github.com/Nguyen2015/CAPTAIN-COLIEE2023/tree/coliee2023で公開されています。
関連論文リスト
- InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - Little Giants: Exploring the Potential of Small LLMs as Evaluation
Metrics in Summarization in the Eval4NLP 2023 Shared Task [53.163534619649866]
本稿では,大規模言語モデルに品質評価の課題を扱えるように,プロンプトベースの手法の有効性を評価することに焦点を当てる。
我々は,標準的なプロンプト,アノテータ命令によって通知されるプロンプト,イノベーティブなチェーン・オブ・シークレットプロンプトなど,様々なプロンプト技術を用いて,系統的な実験を行った。
我々の研究は、これらのアプローチを"小さな"オープンソースモデル(orca_mini_v3_7B)を使って組み合わせることで、競争結果が得られることを示した。
論文 参考訳(メタデータ) (2023-11-01T17:44:35Z) - NeCo@ALQAC 2023: Legal Domain Knowledge Acquisition for Low-Resource
Languages through Data Enrichment [2.441072488254427]
本稿では,ベトナムのテキスト処理タスクに対するNeCo Teamのソリューションを,ALQAC 2023(Automated Legal Question Answering Competition 2023)で紹介する。
法的な文書検索タスクでは,類似度ランキングと深層学習モデルを組み合わせた手法が採用されているが,第2の課題では,異なる質問タイプを扱うための適応的手法が提案されている。
提案手法は, 競争の両課題において, 法的分野における質問応答システムの潜在的メリットと有効性を示す, 卓越した結果を達成している。
論文 参考訳(メタデータ) (2023-09-11T14:43:45Z) - NOWJ at COLIEE 2023 -- Multi-Task and Ensemble Approaches in Legal
Information Processing [1.5593460008414899]
我々は,法情報処理技術の進歩に焦点を当てたCOLIEE 2023コンペティションへのNOWJチームのアプローチを提示する。
我々は、最先端の機械学習モデルとBERT、Longformer、BM25級アルゴリズム、マルチタスク学習モデルといった革新的なアプローチを採用している。
論文 参考訳(メタデータ) (2023-06-08T03:10:49Z) - ICDAR 2023 Competition on Structured Text Extraction from Visually-Rich
Document Images [198.35937007558078]
大会は2022年12月30日に開かれ、2023年3月24日に閉幕した。
トラック1には35人の参加者と91人の有効な応募があり、トラック2には15人の参加者と26人の応募がある。
提案手法の性能によると, 複雑なシナリオやゼロショットシナリオにおいて, 期待される情報抽出性能にはまだ大きなギャップがあると考えられる。
論文 参考訳(メタデータ) (2023-06-05T22:20:52Z) - THUIR@COLIEE 2023: More Parameters and Legal Knowledge for Legal Case
Entailment [16.191450092389722]
本稿は, COLIEE 2023 Legal Case Entailment TaskにおけるTHUIRチームのアプローチについて述べる。
従来の語彙マッチング手法と,異なる大きさの事前学習言語モデルを試す。
第3位はCOLIEE 2023です。
論文 参考訳(メタデータ) (2023-05-11T14:11:48Z) - THUIR@COLIEE 2023: Incorporating Structural Knowledge into Pre-trained
Language Models for Legal Case Retrieval [16.191450092389722]
本稿では,COLIEE 2023におけるチャンピオンシップチームTHUIRのアプローチを要約する。
具体的には,訴訟の理解を深めるために,構造化された事前学習言語モデルを設計する。
最終的に、異なる次元の機能をマージするために、学習とランクの手法が使用される。
論文 参考訳(メタデータ) (2023-05-11T14:08:53Z) - ICDAR 2023 Competition on Reading the Seal Title [58.866588777012744]
この領域での研究を促進するため、シールタイトル(ReST)を読むためのICDAR 2023コンペティションを組織した。
我々は1万の実際のシールデータからなるデータセットを構築し、最も一般的なシールのクラスをカバーし、すべてのシールタイトルテキストにテキストとテキストの内容をラベル付けした。
大会には、第1タスクの応募28件、第2タスクの応募25件を含む、学界や業界から53人の参加者が集まった。
論文 参考訳(メタデータ) (2023-04-24T10:01:41Z) - An Uncommon Task: Participatory Design in Legal AI [64.54460979588075]
われわれは10年以上前に行われた法律分野における、注目に値する、未調査のAI設計プロセスについて検討する。
インタラクティブなシミュレーション手法によって,コンピュータ科学者と弁護士が共同設計者になれることを示す。
論文 参考訳(メタデータ) (2022-03-08T15:46:52Z) - JNLP Team: Deep Learning Approaches for Legal Processing Tasks in COLIEE
2021 [1.8700700550095686]
COLIEEは、自動コンピュータ化された法律テキスト処理における毎年のコンペティションである。
本稿では,法律文書処理における深層学習の手法と実験結果について報告する。
論文 参考訳(メタデータ) (2021-06-25T03:31:12Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。