論文の概要: Recurrently Predicting Hypergraphs
- arxiv url: http://arxiv.org/abs/2106.13919v1
- Date: Sat, 26 Jun 2021 01:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 11:22:53.294476
- Title: Recurrently Predicting Hypergraphs
- Title(参考訳): ハイパーグラフの繰り返し予測
- Authors: David W. Zhang, Gertjan J. Burghouts, Cees G. M. Snoek
- Abstract要約: 問題は、$n$要素の集合に対して$mathcalO(2n)$でスケーリング可能なマルチウェイ関係(ハイパーエッジ)の数から生じる。
そこで本研究では,提案手法の初期推定を反復的に精算することにより,入射行列を予測する再帰型ハイパーグラフニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 30.092688729343678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work considers predicting the relational structure of a hypergraph for a
given set of vertices, as common for applications in particle physics,
biological systems and other complex combinatorial problems. A problem arises
from the number of possible multi-way relationships, or hyperedges, scaling in
$\mathcal{O}(2^n)$ for a set of $n$ elements. Simply storing an indicator
tensor for all relationships is already intractable for moderately sized $n$,
prompting previous approaches to restrict the number of vertices a hyperedge
connects. Instead, we propose a recurrent hypergraph neural network that
predicts the incidence matrix by iteratively refining an initial guess of the
solution. We leverage the property that most hypergraphs of interest are
sparsely connected and reduce the memory requirement to $\mathcal{O}(nk)$,
where $k$ is the maximum number of positive edges, i.e., edges that actually
exist. In order to counteract the linearly growing memory cost from training a
lengthening sequence of refinement steps, we further propose an algorithm that
applies backpropagation through time on randomly sampled subsequences. We
empirically show that our method can match an increase in the intrinsic
complexity without a performance decrease and demonstrate superior performance
compared to state-of-the-art models.
- Abstract(参考訳): 本研究は、与えられた頂点集合に対するハイパーグラフのリレーショナル構造の予測を、素粒子物理学、生体システム、その他の複雑な組合せ問題への応用に共通している。
問題は、$n$要素の集合に対して$\mathcal{O}(2^n)$のスケーリングが可能なマルチウェイ関係(ハイパーエッジ)の数から生じる。
すべての関係に対してインジケータテンソルを格納することは、中程度の大きさの$n$に対して既に難解であり、ハイパーエッジ接続の頂点数を制限する以前のアプローチが促される。
代わりに,解の最初の推測を反復的に精算することで入射行列を予測できる再帰的ハイパーグラフニューラルネットワークを提案する。
ほとんどのハイパーグラフは疎結合であり、メモリ要求を$\mathcal{O}(nk)$に減らし、$k$は実際に存在するエッジの最大数の正のエッジである。
改良ステップの長大化列の訓練から線形に増大するメモリコストを正すために,ランダムにサンプリングされたサブシーケンスに対して時間を通じてバックプロパゲーションを適用するアルゴリズムを提案する。
実験により,本手法は性能低下を伴わずに内在的複雑性の増加と一致し,最先端モデルと比較して優れた性能を示す。
関連論文リスト
- Scalable tensor methods for nonuniform hypergraphs [0.18434042562191813]
最近提案された隣接テンソルは、非一様ハイパーグラフに適用できるが、実際は形成・解析するのに著しくコストがかかる。
テンソル時間同値ベクトル(TTSV)アルゴリズムを開発し,複雑性を$O(nr)$から$r$の低次に改善する。
テンソルベースハイパーグラフ集中度とクラスタリングアルゴリズムを開発することにより,我々のアプローチの柔軟性と実用性を実証する。
論文 参考訳(メタデータ) (2023-06-30T17:41:58Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
我々は,新しいアジャケーシテンソルベースのtextbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN) を提案する。
THNNは高次外装機能パッシングメッセージを通じて、忠実なハイパーグラフモデリングフレームワークである。
3次元視覚オブジェクト分類のための2つの広く使われているハイパーグラフデータセットの実験結果から、モデルの有望な性能を示す。
論文 参考訳(メタデータ) (2023-06-05T03:26:06Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
構成問題の複雑さを軽減するために,MSVR (Multi-block-probe Variance Reduced) という新しい手法を提案する。
本研究の結果は, 試料の複雑さの順序や強靭性への依存など, 様々な面で先行して改善された。
論文 参考訳(メタデータ) (2022-07-18T12:03:26Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
測定から学習した線形モデルの定量化の問題を考える。
この設定の下では、ミニマックスリスクに対する情報理論の下限を導出する。
本稿では,2層ReLUニューラルネットワークに対して,提案手法と上界を拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T02:39:04Z) - Introducing the Expohedron for Efficient Pareto-optimal Fairness-Utility
Amortizations in Repeated Rankings [9.066817876491053]
我々は,生産者側の個々人の露出不公平さを最小限に抑えつつ,消費者側の実用性を最大化する一連のランキングを計算することの課題を考える。
幾何的対象 (polytope) と呼ばれる多面体(polytope) を導入し、その点が位置ベースモデルに対する全ての達成可能なアイテムの露出を表す。
提案手法は,アルゴリズムの複雑度と経験的実行時間の観点から,線形あるいは二次的なプログラミングベースラインと比較した。
我々の解は、BvN分解で達成された$(n-1)2 + 1$の代わりに、わずか$n$置換の分布として表すことができる。
論文 参考訳(メタデータ) (2022-02-07T14:43:35Z) - Hybrid Stochastic-Deterministic Minibatch Proximal Gradient:
Less-Than-Single-Pass Optimization with Nearly Optimal Generalization [83.80460802169999]
HSDMPGは、学習モデル上で過大なエラーの順序である$mathcalObig(1/sttnbig)$を達成可能であることを示す。
損失係数について、HSDMPGは学習モデル上で過大なエラーの順序である$mathcalObig(1/sttnbig)$を達成できることを示す。
論文 参考訳(メタデータ) (2020-09-18T02:18:44Z) - Scalable Deep Generative Modeling for Sparse Graphs [105.60961114312686]
既存のディープニューラルネットワーク手法では、隣接行列を構築することで、$Omega(n2)$複雑さを必要とする。
我々は,この空間を利用して完全隣接行列を生成する新しい自己回帰モデルBiGGを開発した。
トレーニング中、この自己回帰モデルは$O(log n)$同期ステージで並列化できる。
論文 参考訳(メタデータ) (2020-06-28T04:37:57Z) - Does the $\ell_1$-norm Learn a Sparse Graph under Laplacian Constrained
Graphical Models? [13.572602792770288]
ラプラシアン制約ガウス図形モデルの下でグラフを学習する問題を考察する。
我々は、大きな正規化パラメータが驚くほど完全なグラフ、すなわちエッジで接続されたすべてのエッジにつながることを示した。
論文 参考訳(メタデータ) (2020-06-26T12:06:10Z) - S-ADDOPT: Decentralized stochastic first-order optimization over
directed graphs [16.96562173221624]
有向ネットワークノード上に分散する関数のスムーズかつ高コストな関数の和を最小化するために,分散凸最適化を提案する。
特に,各ノードに1次オラクルを仮定するtextbftextttS-ADDOPTアルゴリズムを提案する。
崩壊するステップサイズ$mathcalO (1/k)$に対して、textbfttS-ADDOPT が$mathcalO (1/k)$ で正解に達し、その収束はネットワーク非依存であることを示す。
論文 参考訳(メタデータ) (2020-05-15T21:14:22Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
非滑らかで非滑らかな関数の定常点を見つけるための最初の非漸近解析を提供する。
特に、アダマール半微分可能函数(おそらく非滑らか関数の最大のクラス)について研究する。
論文 参考訳(メタデータ) (2020-02-10T23:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。