論文の概要: Use of Variational Inference in Music Emotion Recognition
- arxiv url: http://arxiv.org/abs/2106.14323v1
- Date: Sun, 27 Jun 2021 21:41:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 13:51:16.357696
- Title: Use of Variational Inference in Music Emotion Recognition
- Title(参考訳): 音楽感情認識における変分推論の利用
- Authors: Nathalie Deziderio and Hugo Tremonte de Carvalho
- Abstract要約: 本研究は,音楽感情認識分野における統計的手法の活用を目的としたものである。
我々は、よく知られたデータベースを理解可能なアルゴリズムのモデリングにおいて、健全な理論的統計的分析が果たす役割について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work was developed aiming to employ Statistical techniques to the field
of Music Emotion Recognition, a well-recognized area within the Signal
Processing world, but hardly explored from the statistical point of view. Here,
we opened several possibilities within the field, applying modern Bayesian
Statistics techniques and developing efficient algorithms, focusing on the
applicability of the results obtained. Although the motivation for this project
was the development of a emotion-based music recommendation system, its main
contribution is a highly adaptable multivariate model that can be useful
interpreting any database where there is an interest in applying regularization
in an efficient manner. Broadly speaking, we will explore what role a sound
theoretical statistical analysis can play in the modeling of an algorithm that
is able to understand a well-known database and what can be gained with this
kind of approach.
- Abstract(参考訳): 本研究は,信号処理の世界においてよく認識されている分野である音楽感情認識の分野において,統計的手法を応用することを目的とした。
ここでは,現代のベイズ統計手法を応用し,得られた結果の適用可能性に着目し,効率的なアルゴリズムを開発した。
このプロジェクトの動機は感情に基づく音楽レコメンデーションシステムの開発にあるが、その主な貢献は高度に適応可能な多変量モデルであり、効率的な正規化の適用に関心があるあらゆるデータベースを解釈するのに有用である。
広く言えば、よく知られたデータベースを理解可能なアルゴリズムのモデリングにおいて、健全な理論的統計的分析がどのような役割を果たすのか、この種のアプローチで何を得ることができるのかを考察する。
関連論文リスト
- EEG-based Multimodal Representation Learning for Emotion Recognition [26.257531037300325]
本稿では,ビデオ,画像,音声などの従来のモダリティだけでなく,脳波データも組み込んだ新しいマルチモーダルフレームワークを提案する。
本フレームワークは,様々な入力サイズを柔軟に扱えるように設計されている。
論文 参考訳(メタデータ) (2024-10-29T01:35:17Z) - A review of feature selection strategies utilizing graph data structures and knowledge graphs [1.9570926122713395]
知識グラフ(KG)の特徴選択は、生物医学研究、自然言語処理(NLP)、パーソナライズされたレコメンデーションシステムなど、さまざまな領域でますます活用されている。
本稿では,機械学習(ML)モデルの有効性向上,仮説生成,解釈可能性向上におけるKGsの機能選択の方法論を考察する。
論文は、スケーラブルでダイナミックな特徴選択アルゴリズムの開発や、KG駆動モデルにおける透明性と信頼を促進するための説明可能なAI原則の統合など、今後の方向性をグラフ化することで締めくくっている。
論文 参考訳(メタデータ) (2024-06-21T04:50:02Z) - Knowledge-guided EEG Representation Learning [27.8095014391814]
自己教師付き学習は、音声、視覚、および音声のマルチメディア領域において印象的な結果をもたらした。
本稿では,脳波の自己教師型モデルを提案する。
また,脳波信号の慣用性を考慮した知識誘導事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-02-15T01:52:44Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - Music Instrument Classification Reprogrammed [79.68916470119743]
プログラム」とは、事前学習されたモデルの入力と出力の両方を修正・マッピングすることで、もともと異なるタスクをターゲットにした、事前学習された深層・複雑なニューラルネットワークを利用する手法である。
本研究では,異なるタスクで学習した表現のパワーを効果的に活用できることを実証し,結果として得られた再プログラムシステムは,訓練パラメータのごく一部で,同等あるいはそれ以上の性能を持つシステムでも実行可能であることを実証する。
論文 参考訳(メタデータ) (2022-11-15T18:26:01Z) - Enhancing Affective Representations of Music-Induced EEG through
Multimodal Supervision and latent Domain Adaptation [34.726185927120355]
脳波の重み付けとして音楽信号を用い,その意味的対応を共通の表現空間に投影することを目的としている。
我々は、LSTMに基づくアテンションモデルと、音楽タギングのための事前訓練されたモデルを組み合わせたバイモーダル・フレームワークと、その2つのモードの分布を整列するリバース・ドメイン・ディミネータを併用して、バイモーダル・フレームワークを利用する。
脳波入力クエリに関連音楽サンプルを提供することにより、モダリティのいずれからも、間接的に、教師付き予測を行うことで、感情認識に利用することができる。
論文 参考訳(メタデータ) (2022-02-20T07:32:12Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - Multi-task Learning with Metadata for Music Mood Classification [0.0]
ムード認識は音楽情報学において重要な問題であり、音楽発見とレコメンデーションに重要な応用がある。
マルチタスク学習手法を提案する。この手法では、共有されたモデルが、気分やメタデータの予測タスクに対して同時に訓練される。
我々の手法を既存の最先端の畳み込みニューラルネットワークに適用することにより、その性能を継続的に改善する。
論文 参考訳(メタデータ) (2021-10-10T11:36:34Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。