論文の概要: Polyconvex anisotropic hyperelasticity with neural networks
- arxiv url: http://arxiv.org/abs/2106.14623v1
- Date: Sun, 20 Jun 2021 15:33:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-04 22:40:28.303523
- Title: Polyconvex anisotropic hyperelasticity with neural networks
- Title(参考訳): ニューラルネットワークによる多凸異方性超弾性
- Authors: Dominik Klein, Mauricio Fern\'andez, Robert J. Martin, Patrizio Neff
and Oliver Weeger
- Abstract要約: 有限変形に対する凸機械学習に基づくモデルを提案する。
モデルは立方体格子メタマテリアルの非常に困難なシミュレーションデータで校正される。
データアプローチのデータは、機械的な考慮に基づいており、追加の実験やシミュレーション機能を必要としない。
- 参考スコア(独自算出の注目度): 1.7616042687330642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the present work, two machine learning based constitutive models for
finite deformations are proposed. Using input convex neural networks, the
models are hyperelastic, anisotropic and fulfill the polyconvexity condition,
which implies ellipticity and thus ensures material stability. The first
constitutive model is based on a set of polyconvex, anisotropic and objective
invariants. The second approach is formulated in terms of the deformation
gradient, its cofactor and determinant, uses group symmetrization to fulfill
the material symmetry condition, and data augmentation to fulfill objectivity
approximately. The extension of the dataset for the data augmentation approach
is based on mechanical considerations and does not require additional
experimental or simulation data. The models are calibrated with highly
challenging simulation data of cubic lattice metamaterials, including finite
deformations and lattice instabilities. A moderate amount of calibration data
is used, based on deformations which are commonly applied in experimental
investigations. While the invariant-based model shows drawbacks for several
deformation modes, the model based on the deformation gradient alone is able to
reproduce and predict the effective material behavior very well and exhibits
excellent generalization capabilities. Thus, in particular the second model
presents a highly flexible constitutive modeling approach, that leads to a
mathematically well-posed problem.
- Abstract(参考訳): 本研究では,有限変形に対する2つの機械学習に基づく構成モデルを提案する。
入力凸ニューラルネットワークを使用すると、モデルは超弾性、異方性を持ち、多凸性条件を満たす。
最初の構成モデルは、多凸、異方性および客観的不変量の集合に基づいている。
第2のアプローチは、変形勾配、その共因子および行列式で定式化され、材料対称性条件を満たすために群対称性を使い、データ拡張によりほぼ客観性を満たす。
データ拡張アプローチのためのデータセットの拡張は、機械的考慮に基づいており、追加の実験データやシミュレーションデータを必要としない。
モデルは、有限変形や格子不安定性を含む立方体格子メタマテリアルの非常に困難なシミュレーションデータで校正される。
実験調査に一般的に適用される変形に基づいて、適度な量の校正データを用いる。
不変モデルでは, 変形モードの欠点を示すが, 変形勾配のみに基づくモデルでは, 有効物質挙動の再現と予測が極めて良好であり, 優れた一般化能力を示す。
したがって、特に第2のモデルは、数学的によく考えられた問題につながる非常に柔軟な構成的モデリングアプローチを示す。
関連論文リスト
- Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
不均一物質のマイクロスケール解析のためのハイブリッド物理に基づくデータ駆動サロゲートモデルについて検討した。
提案したモデルは、ニューラルネットワークにそれらを埋め込むことで、フルオーダーのマイクロモデルで使用されるモデルに含まれる物理に基づく知識の恩恵を受ける。
論文 参考訳(メタデータ) (2024-04-05T12:40:03Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
エラスト塑性の定式化のモジュラリティに頼って,データの変動量に対処できるハイブリッドフレームワークについて論じる。
発見された物質モデルは、よく補間できるだけでなく、トレーニングデータの領域外から熱力学的に一貫した方法で正確な外挿を可能にする。
論文 参考訳(メタデータ) (2022-10-15T17:35:23Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Calibrating constitutive models with full-field data via physics
informed neural networks [0.0]
実フィールド変位データに基づくモデルパラメータ化の発見のための物理インフォームド深層学習フレームワークを提案する。
我々は、ニューラルネットワークの予測に物理的な制約を課すために、強い形式ではなく、支配方程式の弱い形式で作業する。
我々は、インフォメーション機械学習が実現可能な技術であり、モデルのキャリブレーションにフルフィールド実験データをどのように利用するかというパラダイムを変える可能性があることを実証した。
論文 参考訳(メタデータ) (2022-03-30T18:07:44Z) - Dynamic multi feature-class Gaussian process models [0.0]
本研究では, 医用画像における形状, ポーズ, 強度特徴の自動学習のための統計的モデリング手法を提案する。
DMFC-GPM (DMFC-GPM) はガウス過程(GP)に基づくモデルであり、線形および非線形の変動を符号化する潜在空間を共有する。
モデル性能の結果は、この新しいモデリングパラダイムが堅牢で、正確で、アクセス可能であり、潜在的な応用があることを示唆している。
論文 参考訳(メタデータ) (2021-12-08T15:12:47Z) - Automatically Polyconvex Strain Energy Functions using Neural Ordinary
Differential Equations [0.0]
深層ニューラルネットワークは、フォーム近似の制約なしに複雑な物質を学習することができる。
N-ODE材料モデルは、クローズドフォーム材料モデルから生成された合成データをキャプチャすることができる。
フレームワークは、大きな種類の材料をモデル化するのに使用できます。
論文 参考訳(メタデータ) (2021-10-03T13:11:43Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。