論文の概要: Understanding Cognitive Fatigue from fMRI Scans with Self-supervised
Learning
- arxiv url: http://arxiv.org/abs/2106.15009v1
- Date: Mon, 28 Jun 2021 22:38:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-01 07:06:10.932484
- Title: Understanding Cognitive Fatigue from fMRI Scans with Self-supervised
Learning
- Title(参考訳): 自己教師型学習によるfMRIスキャンからの認知疲労の理解
- Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia
Makedon, Glenn Wylie
- Abstract要約: 本稿では, 認知疲労の状態を, 不快感から極度の疲労状態まで, 6つのレベルに分けることを提案する。
我々は,空間的特徴抽出に畳み込みニューラルネットワーク(CNN)を用い,4次元fMRIスキャンの時間的モデリングに長寿命メモリ(LSTM)ネットワークを構築した。
本手法は,fMRIデータから認知疲労を解析するための最先端技術を確立し,従来の手法に勝ってこの問題を解決する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that
records neural activations in the brain by capturing the blood oxygen level in
different regions based on the task performed by a subject. Given fMRI data,
the problem of predicting the state of cognitive fatigue in a person has not
been investigated to its full extent. This paper proposes tackling this issue
as a multi-class classification problem by dividing the state of cognitive
fatigue into six different levels, ranging from no-fatigue to extreme fatigue
conditions. We built a spatio-temporal model that uses convolutional neural
networks (CNN) for spatial feature extraction and a long short-term memory
(LSTM) network for temporal modeling of 4D fMRI scans. We also applied a
self-supervised method called MoCo to pre-train our model on a public dataset
BOLD5000 and fine-tuned it on our labeled dataset to classify cognitive
fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury
(TBI) patients and healthy controls (HCs) while performing a series of
cognitive tasks. This method establishes a state-of-the-art technique to
analyze cognitive fatigue from fMRI data and beats previous approaches to solve
this problem.
- Abstract(参考訳): 機能的磁気共鳴イメージング(fmri)は、被験者が行う課題に基づいて、異なる領域の血中酸素レベルを捉えて脳内の神経活動を記録する神経イメージング技術である。
fMRIデータから、認知疲労の状態を予測する問題は、その全範囲において研究されていない。
本稿では, 認知疲労の状態を, 不快感から極度の疲労状態まで, 6つのレベルに分けて, マルチクラス分類問題として扱うことを提案する。
空間的特徴抽出に畳み込みニューラルネットワーク(CNN)と4次元fMRIスキャンの時間的モデリングに長寿命メモリ(LSTM)を用いた時空間モデルを構築した。
また、MoCoと呼ばれる自己教師型手法を用いて、公開データセットBOLD5000でモデルを事前訓練し、ラベル付きデータセットで微調整して認知疲労を分類した。
新たなデータセットには,外傷性脳損傷(TBI)患者のfMRIスキャンと,一連の認知タスクを実施中の健康管理(HC)が含まれている。
本手法は,fMRIデータから認知疲労を解析するための最先端技術を確立し,従来の手法に勝ってこの問題を解決する。
関連論文リスト
- Study of Brain Network in Alzheimers Disease Using Wavelet-Based Graph Theory Method [0.0]
アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶喪失と認知低下を特徴とする神経変性疾患である。
ピアソンの相関のような伝統的な手法は相関行列を計算するために使われてきた。
本稿では、離散ウェーブレット変換(DWT)とグラフ理論を統合し、脳ネットワークの動的挙動をモデル化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-06T07:26:14Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
本稿では,fMRIデータを復号化するための新たな二相フレームワークであるNeuroCineを紹介する。
公開されているfMRIデータセットでテストした結果,有望な結果が得られた。
このモデルが既存の脳構造や機能と一致し,その生物学的妥当性と解釈可能性を示すことが示唆された。
論文 参考訳(メタデータ) (2024-02-02T17:34:25Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
ヒトの初期および後期の脳障害は、脳機能における病理学的変化を共有する可能性がある。
病理的共通性に関する神経画像データによる重要な証拠はいまだ発見されていない。
多地点機能磁気共鳴画像データを用いたディープラーニングモデルを構築し、健康的な制御から5つの異なる脳障害を分類する。
論文 参考訳(メタデータ) (2023-02-23T09:22:05Z) - fMRI-S4: learning short- and long-range dynamic fMRI dependencies using
1D Convolutions and State Space Models [0.0]
fMRI-S4は、静止状態機能MRIから表現型と精神疾患を分類するための汎用的なディープラーニングモデルである。
我々は,fMRI-S4が3つのタスクすべてにおいて既存の手法よりも優れており,各設定ごとに特別なパラメータ調整を行わずに,プラグ&プレイモデルとして訓練できることを示す。
論文 参考訳(メタデータ) (2022-08-08T14:07:25Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
機能的MRI(fMRI)によって導かれる自己神経変調タスクを行う個人のための個人表現を学習するためのディープニューラルネットワーク手法を提案する。
この表現は、直近のfMRIフレームが与えられた次のfMRIフレームにおける扁桃体活動を予測する自己教師型リカレントニューラルネットワークによって学習され、学習された個々の表現に条件付けされる。
論文 参考訳(メタデータ) (2021-12-06T10:16:54Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
ASD分類のための4次元畳み込み深層学習手法を提案する。
F1スコアは0.71、F1スコアは0.65であるのに対し、我々は4Dニューラルネットワークと畳み込みリカレントモデルを採用する。
論文 参考訳(メタデータ) (2020-04-21T17:19:06Z) - Attend and Decode: 4D fMRI Task State Decoding Using Attention Models [2.6954666679827137]
我々は、Brain Attend and Decode (BAnD)と呼ばれる新しいアーキテクチャを提案する。
BAnDは残留畳み込みニューラルネットワークを用いて空間的特徴抽出と時間的モデリングを行う。
我々は,Human Connectome Project-Young Adult データセットの 7-task ベンチマークによる以前の研究と比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2020-04-10T21:29:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。