論文の概要: Evading Adversarial Example Detection Defenses with Orthogonal Projected
Gradient Descent
- arxiv url: http://arxiv.org/abs/2106.15023v1
- Date: Mon, 28 Jun 2021 23:19:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 15:19:28.109457
- Title: Evading Adversarial Example Detection Defenses with Orthogonal Projected
Gradient Descent
- Title(参考訳): 直交射影勾配勾配による逆向き検出防御の回避
- Authors: Oliver Bryniarski, Nabeel Hingun, Pedro Pachuca, Vincent Wang,
Nicholas Carlini
- Abstract要約: 敵の例検出防衛の実施には、モデルによって同時に分類され、非敵の例として検出されなければならない敵の例を見つける必要がある。
複数の同時的制約を満たそうとする既存の攻撃は、他の制約を満足させるコストで、1つの制約に対して過度に最適化されることが多い。
本手法は,4つの最先端検出防御を回避し,検出率を0%に抑えながら精度を0%に低下させる。
- 参考スコア(独自算出の注目度): 17.990042129401832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evading adversarial example detection defenses requires finding adversarial
examples that must simultaneously (a) be misclassified by the model and (b) be
detected as non-adversarial. We find that existing attacks that attempt to
satisfy multiple simultaneous constraints often over-optimize against one
constraint at the cost of satisfying another. We introduce Orthogonal Projected
Gradient Descent, an improved attack technique to generate adversarial examples
that avoids this problem by orthogonalizing the gradients when running standard
gradient-based attacks. We use our technique to evade four state-of-the-art
detection defenses, reducing their accuracy to 0% while maintaining a 0%
detection rate.
- Abstract(参考訳): 逆境検出の回避には、(a)モデルによって誤分類され、(b)非逆境として検出されなければならない逆境の例を見つける必要がある。
複数の同時制約を満たそうとする既存の攻撃は、他の制約を満たすコストで、ある制約に対して過大に最適化されることが多い。
直交射影勾配Descentは、標準的な勾配に基づく攻撃を行う際の勾配の直交化によってこの問題を回避するために改良された攻撃手法である。
本手法は,4つの最先端検出防御を回避し,0%検出率を維持しつつ精度を0%に下げる。
関連論文リスト
- AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - Enhancing the Antidote: Improved Pointwise Certifications against Poisoning Attacks [30.42301446202426]
毒殺攻撃は、トレーニングコーパスに小さな変更を加えることで、モデル行動に不当に影響を及ぼす可能性がある。
限られた数のトレーニングサンプルを修正した敵攻撃に対して,サンプルの堅牢性を保証することを可能とする。
論文 参考訳(メタデータ) (2023-08-15T03:46:41Z) - Towards Black-box Adversarial Example Detection: A Data
Reconstruction-based Method [9.857570123016213]
ブラックボックス攻撃はより現実的な脅威であり、様々なブラックボックス敵の訓練ベースの防御方法につながっている。
BAD問題に対処するために,データ再構成に基づく逆例検出手法を提案する。
論文 参考訳(メタデータ) (2023-06-03T06:34:17Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
我々は、攻撃最適化中に局所最小限を避けるための誘導機構を開発し、G-PGAと呼ばれる新たな攻撃に繋がる。
修正された攻撃では、ランダムに再起動したり、多数の攻撃を繰り返したり、最適なステップサイズを検索したりする必要がありません。
効果的な攻撃以上に、G-PGAは敵防御における勾配マスキングによる解離性堅牢性を明らかにするための診断ツールとして用いられる。
論文 参考訳(メタデータ) (2022-12-30T18:45:23Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Attack-Agnostic Adversarial Detection [13.268960384729088]
本稿では,2つの側面において,敵対的不可知論による統計的偏差を定量化する。
本手法は, CIFAR10, CIFAR100, SVHNでそれぞれ94.9%, 89.7%, 94.6%のROC AUCを達成でき, 攻撃のほとんどにおいて敵の例で訓練した対向検出器と同等の性能を有することを示す。
論文 参考訳(メタデータ) (2022-06-01T13:41:40Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
本稿では,様々な摂動レベルの攻撃に対して,仮定なしに防御できる汎用的対向検出手法であるTREATEDを提案する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-13T03:31:20Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
この研究は、特定の攻撃アルゴリズムを知らずにASVの敵防衛を行う最初の試みの一つである。
本研究の目的は,1) 対向摂動浄化と2) 対向摂動検出の2つの視点から対向防御を行うことである。
実験の結果, 検出モジュールは, 約80%の精度で対向検体を検出することにより, ASVを効果的に遮蔽することがわかった。
論文 参考訳(メタデータ) (2021-06-01T07:10:54Z) - Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks [65.20660287833537]
本稿では,最適段差の大きさと目的関数の問題による障害を克服するPGD攻撃の2つの拡張を提案する。
そして、我々の新しい攻撃と2つの補完的な既存の攻撃を組み合わせることで、パラメータフリーで、計算に手頃な価格で、ユーザに依存しない攻撃のアンサンブルを形成し、敵の堅牢性をテストする。
論文 参考訳(メタデータ) (2020-03-03T18:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。