論文の概要: Machine learning for plant microRNA prediction: A systematic review
- arxiv url: http://arxiv.org/abs/2106.15159v1
- Date: Tue, 29 Jun 2021 08:22:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-30 15:18:33.994387
- Title: Machine learning for plant microRNA prediction: A systematic review
- Title(参考訳): 植物マイクロRNA予測のための機械学習 : 系統的レビュー
- Authors: Shyaman Jayasundara, Sandali Lokuge, Puwasuru Ihalagedara and
Damayanthi Herath
- Abstract要約: マイクロRNA(miRNA)は内在性の小さな非コードRNAであり、遺伝子調節に重要な役割を果たしている。
計算と機械学習に基づくアプローチがマイクロRNAの予測に採用されている。
本研究は,植物における識別のために開発された機械学習手法に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play an
important role in post-transcriptional gene regulation. However, the
experimental determination of miRNA sequence and structure is both expensive
and time-consuming. Therefore, computational and machine learning-based
approaches have been adopted to predict novel microRNAs. With the involvement
of data science and machine learning in biology, multiple research studies have
been conducted to find microRNAs with different computational methods and
different miRNA features. Multiple approaches are discussed in detail
considering the learning algorithm/s used, features considered, dataset/s used
and the criteria used in evaluations. This systematic review focuses on the
machine learning methods developed for miRNA identification in plants. This
will help researchers to gain a detailed idea about past studies and identify
novel paths that solve drawbacks occurred in past studies. Our findings
highlight the need for plant-specific computational methods for miRNA
identification.
- Abstract(参考訳): マイクロRNA(miRNA)は、転写後遺伝子制御において重要な役割を果たす内因性の小さな非コードRNAである。
しかし、miRNA配列と構造の実験的な決定は高価で時間を要する。
したがって、新しいマイクロrnaを予測するために計算と機械学習に基づくアプローチが採用されている。
データサイエンスと機械学習の生物学への関与により、異なる計算方法と異なるmiRNA特徴を持つマイクロRNAを見つけるために複数の研究が実施された。
複数のアプローチについて,使用した学習アルゴリズム/s,検討した特徴,使用するデータセット/s,評価に使用する基準について詳細に検討した。
本研究は,植物におけるmiRNA識別のための機械学習手法について概説する。
これは、研究者が過去の研究に関する詳細なアイデアを入手し、過去の研究で生じた欠点を解決する新しい経路を特定するのに役立つ。
この結果から, 植物特異的なmiRNA同定法の必要性が示唆された。
関連論文リスト
- LoRA-BERT: a Natural Language Processing Model for Robust and Accurate Prediction of long non-coding RNAs [11.346750562942345]
長い非コードRNA(lncRNA)は多くの生物学的プロセスにおいて重要な調節因子である。
深層学習に基づくアプローチは、lncRNAを分類するために導入された。
LoRA-BERTは配列分類におけるヌクレオチドレベルの情報の重要性を捉えるように設計されている。
論文 参考訳(メタデータ) (2024-11-11T22:17:01Z) - Character-level Tokenizations as Powerful Inductive Biases for RNA Foundational Models [0.0]
RNAの挙動を理解し予測することは、RNAの構造と相互作用の複雑さのために困難である。
現在のRNAモデルは、タンパク質ドメインで観測された性能とはまだ一致していない。
ChaRNABERTは、確立されたベンチマークでいくつかのタスクで最先端のパフォーマンスに到達することができる。
論文 参考訳(メタデータ) (2024-11-05T21:56:16Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
本稿では、最初の包括的なRNAベンチマークBEACON(textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models)を紹介する。
まずBEACONは、構造解析、機能研究、工学的応用を網羅した、これまでの広範囲にわたる研究から導かれた13のタスクから構成される。
第2に、CNNのような従来のアプローチや、言語モデルに基づく高度なRNA基盤モデルなど、さまざまなモデルについて検討し、これらのモデルのタスク固有のパフォーマンスに関する貴重な洞察を提供する。
第3に、重要なRNA言語モデルコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-14T19:39:19Z) - Description Generation using Variational Auto-Encoders for precursor
microRNA [5.6710852973206105]
本稿では、Vari Auto-Encodersによる生成モデリングを利用して、pre-miRNAの潜伏因子を明らかにする新しいフレームワークを提案する。
フレームワークを分類に適用し、高い再構成と分類性能を得るとともに、正確な記述も開発する。
論文 参考訳(メタデータ) (2023-11-29T15:41:45Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
本研究では,データ駆動型RNA設計パイプラインを体系的に構築することを目的とする。
我々は、ベンチマークデータセットを作成し、複雑なRNA第三次構造を表現するための包括的な構造モデリングアプローチを設計した。
RNA設計プロセスを容易にするために,塩基対を持つ抽出二次構造体を事前知識として組み込んだ。
論文 参考訳(メタデータ) (2023-01-25T17:19:49Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
E2Efold-3Dというエンド・ツー・エンドの深層学習手法を開発し,テクスタイド・ノボRNA構造予測を精度良く行う。
完全微分可能なエンドツーエンドパイプライン、二次構造による自己蒸留、パラメータ効率のよいバックボーンの定式化など、データ不足を克服するために、いくつかの新しいコンポーネントが提案されている。
論文 参考訳(メタデータ) (2022-07-04T17:15:35Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
本稿では,RNA配列設計に強化学習を適用した新しいベンチマークを提案する。このベンチマークでは,目的関数を配列の二次構造における自由エネルギーとして定義する。
本稿では,これらのアルゴリズムに対して行うアブレーション解析の結果と,バッチ間でのアルゴリズムの性能を示すグラフを示す。
論文 参考訳(メタデータ) (2021-11-05T02:54:06Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
本稿では,AGARデータセットを用いた3つの深層学習手法の性能について検討する。
得られた結果は将来の実験のベンチマークとして機能するかもしれない。
論文 参考訳(メタデータ) (2021-08-23T12:06:00Z) - Computational prediction of RNA tertiary structures using machine
learning methods [14.35527588241679]
計算予測アプローチはRNA構造とその安定化因子を理解するのに役立つ。
タンパク質関連分野におけるそれらの利用の歴史は長いが、RNA第3次構造を予測する機械学習手法は新しくて稀である。
論文 参考訳(メタデータ) (2020-09-03T04:01:43Z) - Review of Machine-Learning Methods for RNA Secondary Structure
Prediction [21.3539253580504]
機械学習技術に基づくRNA二次構造予測手法の概要について概説する。
RNA二次構造予測の分野で現在進行中の課題と今後の動向についても論じる。
論文 参考訳(メタデータ) (2020-09-01T03:17:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。