論文の概要: Mitigating Uncertainty of Classifier for Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2107.00727v1
- Date: Thu, 1 Jul 2021 20:08:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 04:43:44.420367
- Title: Mitigating Uncertainty of Classifier for Unsupervised Domain Adaptation
- Title(参考訳): 教師なしドメイン適応のための分類器の不確かさの軽減
- Authors: Shanu Kumar, Vinod Kumar Kurmi, Praphul Singh, Vinay P Namboodiri
- Abstract要約: ソースとターゲット分布の整合性の観点から,分類器の役割を徹底的に検討する。
分析の結果,これら3つの分布を用いることで,すべてのデータセットのパフォーマンスが一貫した改善が達成されることがわかった。
- 参考スコア(独自算出の注目度): 21.56619121620334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding unsupervised domain adaptation has been an important task that
has been well explored. However, the wide variety of methods have not analyzed
the role of a classifier's performance in detail. In this paper, we thoroughly
examine the role of a classifier in terms of matching source and target
distributions. We specifically investigate the classifier ability by matching
a) the distribution of features, b) probabilistic uncertainty for samples and
c) certainty activation mappings. Our analysis suggests that using these three
distributions does result in a consistently improved performance on all the
datasets. Our work thus extends present knowledge on the role of the various
distributions obtained from the classifier towards solving unsupervised domain
adaptation.
- Abstract(参考訳): 教師なしのドメイン適応を理解することは、よく検討された重要なタスクです。
しかし、様々な手法が分類器の性能を詳細に分析していない。
本稿では,ソースとターゲット分布の整合性の観点から,分類器の役割を徹底的に検討する。
具体的には,a)特徴の分布,b)サンプルの確率的不確実性,c)確実性アクティベーションマッピングのマッチングにより,分類能力を検討する。
分析の結果,これら3つの分布を用いることで,すべてのデータセットのパフォーマンスが一貫した改善が得られた。
そこで本研究では,分類器から得られた様々な分布の役割に関する知識を,教師なし領域適応の解決に向けて拡張する。
関連論文リスト
- Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Adapting to Latent Subgroup Shifts via Concepts and Proxies [82.01141290360562]
最適ターゲット予測器は、ソースドメインでのみ利用できる概念とプロキシ変数の助けを借りて、非パラメトリックに識別可能であることを示す。
本研究では,データ生成プロセスに特有の潜在変数モデルを提案する。
論文 参考訳(メタデータ) (2022-12-21T18:30:22Z) - Empirical Study on Optimizer Selection for Out-of-Distribution
Generalization [16.386766049451317]
現代のディープラーニングシステムは、テストデータ分布がトレーニングデータ分布とわずかに異なる場合、うまく一般化しない。
本研究では,分布シフトの異なるクラスに対して,一般的な一階述語一般化の性能について検討する。
論文 参考訳(メタデータ) (2022-11-15T23:56:30Z) - Unsupervised domain adaptation with non-stochastic missing data [0.6608945629704323]
対象領域に欠落するデータが存在する場合の分類問題に対する教師なし領域適応(UDA)について検討する。
命令はドメイン不変の潜在空間で実行され、完全なソースドメインからの間接的な監視を利用する。
データセットの適応、分類、計算を共同で行う利点を示す。
論文 参考訳(メタデータ) (2021-09-16T06:37:07Z) - Learning to Transfer with von Neumann Conditional Divergence [14.926485055255942]
我々は、複数の領域間の転送可能性を改善するために、最近提案されたフォン・ノイマン条件分岐を導入する。
本研究では,これらの課題が同時に,あるいは逐次的に観察されることを前提として,新たな学習目標を設計する。
どちらのシナリオでも、新しいタスクの一般化誤差が小さく、(シーケンシャルな設定で)ソースタスクを忘れないという点で、最先端のメソッドに対して好ましい性能が得られる。
論文 参考訳(メタデータ) (2021-08-07T22:18:23Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - Bi-Classifier Determinacy Maximization for Unsupervised Domain
Adaptation [24.9073164947711]
この問題に対処するために,Bi-Classifier Determinacy Maximization (BCDM) を提案する。
対象試料が常に決定境界によって明確に分離できないという観察に動機づけられ,新しい分類器決定性不一致指標を設計する。
BCDMは、ターゲット予測出力の一貫性と決定を促すことにより、識別表現を生成することができる。
論文 参考訳(メタデータ) (2020-12-13T07:55:39Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
ドメインシフトの下で校正された不確実性を学習するためのフレームワークを提案する。
特に、密度比推定は、ターゲット(テスト)サンプルの近さをソース(トレーニング)分布に反映する。
提案手法は下流タスクに有利な校正不確実性を生成する。
論文 参考訳(メタデータ) (2020-10-08T02:10:54Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
未知の真のターゲットラベルのプロキシとして、ドメイン不変の予測器のセットを使用します。
結果として生じるリスク見積の誤差は、プロキシモデルのターゲットリスクに依存する。
論文 参考訳(メタデータ) (2020-07-06T17:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。