Classification of COVID-19 Patients with their Severity Level from Chest
CT Scans using Transfer Learning
- URL: http://arxiv.org/abs/2205.13774v1
- Date: Fri, 27 May 2022 06:22:09 GMT
- Title: Classification of COVID-19 Patients with their Severity Level from Chest
CT Scans using Transfer Learning
- Authors: Mansi Gupta, Aman Swaraj, Karan Verma
- Abstract summary: The rapid increment in cases of COVID-19 has led to an increase in demand for hospital beds and other medical equipment.
Keeping this in mind, we share our research in detecting COVID-19 as well as assessing its severity using chest-CT scans and Deep Learning pre-trained models.
Our model can therefore help radiologists detect COVID-19 and the extent of its severity.
- Score: 3.667495151642095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background and Objective: During pandemics, the use of artificial
intelligence (AI) approaches combined with biomedical science play a
significant role in reducing the burden on the healthcare systems and
physicians. The rapid increment in cases of COVID-19 has led to an increase in
demand for hospital beds and other medical equipment. However, since medical
facilities are limited, it is recommended to diagnose patients as per the
severity of the infection. Keeping this in mind, we share our research in
detecting COVID-19 as well as assessing its severity using chest-CT scans and
Deep Learning pre-trained models. Dataset: We have collected a total of 1966 CT
Scan images for three different class labels, namely, Non-COVID, Severe COVID,
and Non-Severe COVID, out of which 714 CT images belong to the Non-COVID
category, 713 CT images are for Non-Severe COVID category and 539 CT images are
of Severe COVID category. Methods: All of the images are initially
pre-processed using the Contrast Limited Histogram Equalization (CLAHE)
approach. The pre-processed images are then fed into the VGG-16 network for
extracting features. Finally, the retrieved characteristics are categorized and
the accuracy is evaluated using a support vector machine (SVM) with 10-fold
cross-validation (CV). Result and Conclusion: In our study, we have combined
well-known strategies for pre-processing, feature extraction, and
classification which brings us to a remarkable success rate of disease and its
severity recognition with an accuracy of 96.05% (97.7% for Non-Severe COVID-19
images and 93% for Severe COVID-19 images). Our model can therefore help
radiologists detect COVID-19 and the extent of its severity.
Related papers
- COVID-19 Detection Based on Self-Supervised Transfer Learning Using
Chest X-Ray Images [38.65823547986758]
We propose a new learning scheme called self-supervised transfer learning for detecting COVID-19 from chest X-ray (CXR) images.
We provide quantitative evaluation on the largest open COVID-19 CXR dataset and qualitative results for visual inspection.
arXiv Detail & Related papers (2022-12-19T07:10:51Z) - Classification of COVID-19 on chest X-Ray images using Deep Learning
model with Histogram Equalization and Lungs Segmentation [1.6019444314820142]
We present our study based on deep learning architecture for detecting covid-19 infected lungs using chest X-rays.
Our novel approach combining well-known pre-processing techniques, feature extraction methods, and dataset balancing method, lead us to an outstanding rate of recognition of 98%.
arXiv Detail & Related papers (2021-12-05T05:04:38Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
During pandemic era, visual assessment and quantification of COVID-19 lung lesions by expert radiologists become expensive and prone to error.
This paper introduces an open access COVID-19 CT segmentation dataset containing 433 CT images from 82 patients that have been annotated by an expert radiologist.
A Deep Neural Network (DNN)-based framework is proposed, referred to as the COVID-Rate, that autonomously segments lung abnormalities associated with COVID-19 from chest CT scans.
arXiv Detail & Related papers (2021-07-04T03:19:43Z) - A novel multiple instance learning framework for COVID-19 severity
assessment via data augmentation and self-supervised learning [64.90342559393275]
How to fast and accurately assess the severity level of COVID-19 is an essential problem, when millions of people are suffering from the pandemic around the world.
We observe that there are two issues -- weak annotation and insufficient data that may obstruct automatic COVID-19 severity assessment with CT images.
Our method could obtain an average accuracy of 95.8%, with 93.6% sensitivity and 96.4% specificity, which outperformed previous works.
arXiv Detail & Related papers (2021-02-07T16:30:18Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
Coronavirus disease 2019 (COVID-19) is a Public Health Emergency of International Concern infecting more than 40 million people across 188 countries and territories.
Deep learning approaches have become an effective tool for automatic screening of medical images, and it is also being considered for COVID-19 diagnosis.
We propose a supervised domain adaption based COVID-19 CT diagnostic method which can perform effectively when only a small samples of labeled CT scans are available.
arXiv Detail & Related papers (2021-02-01T02:37:49Z) - Screening COVID-19 Based on CT/CXR Images & Building a Publicly
Available CT-scan Dataset of COVID-19 [6.142272540492935]
This study builds a large-size publicly available CT-scan dataset, consisting of more than 13k CT-images of more than 1000 individuals, in which 8k images are taken from 500 patients infected with COVID-19.
We propose a deep learning model for screening COVID-19 using our proposed CT dataset and report the baseline results.
Finally, we extend the proposed CT model for screening COVID-19 from CXR images using a transfer learning approach.
arXiv Detail & Related papers (2020-12-28T11:52:33Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
The aim of this study is to realize automatic severity assessment (non-severe or severe) of COVID-19 based on chest CT images.
A random forest (RF) model is trained to assess the severity (non-severe or severe) based on quantitative features.
Several quantitative features, which have the potential to reflect the severity of COVID-19, were revealed.
arXiv Detail & Related papers (2020-03-26T15:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.