論文の概要: Semi-supervised Learning for Dense Object Detection in Retail Scenes
- arxiv url: http://arxiv.org/abs/2107.02114v1
- Date: Mon, 5 Jul 2021 16:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 16:37:30.058725
- Title: Semi-supervised Learning for Dense Object Detection in Retail Scenes
- Title(参考訳): 小売店舗における高密度物体検出のための半教師付き学習
- Authors: Jaydeep Chauhan, Srikrishna Varadarajan, Muktabh Mayank Srivastava
- Abstract要約: 小売ドメインで利用可能な大量のラベルなしデータを効果的に活用するための半教師付き学習を提案する。
ノイズの多い学生のトレーニング手法でラベルのないデータを使用することで,密集した店舗シーンにおける物体の正確な検出の精度を向上させることができることを示す。
- 参考スコア(独自算出の注目度): 1.5469452301122177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retail scenes usually contain densely packed high number of objects in each
image. Standard object detection techniques use fully supervised training
methodology. This is highly costly as annotating a large dense retail object
detection dataset involves an order of magnitude more effort compared to
standard datasets. Hence, we propose semi-supervised learning to effectively
use the large amount of unlabeled data available in the retail domain. We adapt
a popular self supervised method called noisy student initially proposed for
object classification to the task of dense object detection. We show that using
unlabeled data with the noisy student training methodology, we can improve the
state of the art on precise detection of objects in densely packed retail
scenes. We also show that performance of the model increases as you increase
the amount of unlabeled data.
- Abstract(参考訳): 小売シーンは、通常、各画像に密集した大量のオブジェクトを含む。
標準オブジェクト検出技術は、完全に教師付きトレーニング手法を使用する。
大規模な小売オブジェクト検出データセットに注釈をつけると、標準データセットに比べて桁違いの労力がかかるため、これは非常にコストがかかる。
そこで本研究では,小売ドメインで利用可能な大量のラベルなしデータを効果的に活用するための半教師付き学習を提案する。
そこで我々は,まず,高密度物体検出の課題に対象分類を提案する,ノイズのある学生という,身近な自己管理手法を適用した。
ノイズの多い学生のトレーニング手法でラベルのないデータを使用することで,密集した店舗シーンにおける物体の正確な検出精度を向上させることができることを示す。
また,ラベルなしデータの量を増やすと,モデルの性能が向上することを示す。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - Unsupervised learning based object detection using Contrastive Learning [6.912349403119665]
本研究では,教師なし・自己教師型学習を通じて,単段階物体検出装置を訓練するための画期的な手法を提案する。
我々の最先端のアプローチはラベリングプロセスに革命をもたらす可能性を秘めており、手動アノテーションに関連する時間とコストを大幅に削減する。
我々は、画像間のコントラスト学習という概念を創始し、重要な位置情報の取得を可能にした。
論文 参考訳(メタデータ) (2024-02-21T01:44:15Z) - Proposal-Contrastive Pretraining for Object Detection from Fewer Data [11.416621957617334]
本稿では,新しい教師なし総合事前学習手法ProSeCoを提案する。
ProSeCoは、コントラスト学習のために検出器によって生成される多数のオブジェクト提案を使用する。
本手法は,標準および新しいベンチマークにおいて,対象検出のための教師なし事前学習において,最先端の手法であることを示す。
論文 参考訳(メタデータ) (2023-10-25T17:59:26Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - Scaling Novel Object Detection with Weakly Supervised Detection
Transformers [21.219817483091166]
Weakly Supervised Detection Transformerを提案する。これは大規模な事前学習データセットからWSODファインタニングへの効率的な知識伝達を可能にする。
提案手法は, 大規模オブジェクト検出データセットにおいて, 従来の最先端モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-07-11T21:45:54Z) - Towards Real-World Prohibited Item Detection: A Large-Scale X-ray
Benchmark [53.9819155669618]
本稿では,PIDrayと命名された大規模データセットについて述べる。
大量の努力を払って、私たちのデータセットには、高品質な注釈付きセグメンテーションマスクとバウンディングボックスを備えた47,677ドルのX線画像に、禁止アイテムの12ドルカテゴリが含まれています。
提案手法は最先端の手法に対して,特に故意に隠された項目を検出するために好適に機能する。
論文 参考訳(メタデータ) (2021-08-16T11:14:16Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
インスタンスローカリゼーションと呼ばれる,新たな自己監視型プリテキストタスクを提案する。
境界ボックスを事前学習に組み込むことで、より優れたタスクアライメントとアーキテクチャアライメントが促進されることを示す。
実験結果から, オブジェクト検出のための最先端の転送学習結果が得られた。
論文 参考訳(メタデータ) (2021-02-16T17:58:57Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
本稿では,複数の物体検出器の出力をアンサンブルすることで,画像データ上の境界ボックスの検出性能と精度を向上させる手法を提案する。
本研究では,2段階追跡に基づく検出精度向上手法を提案することで,映像データに拡張する。
論文 参考訳(メタデータ) (2021-02-09T12:38:16Z) - Learning Object Detection from Captions via Textual Scene Attributes [70.90708863394902]
キャプションには、オブジェクトの属性やそれらの関係など、画像に関するよりリッチな情報が含まれている、と我々は主張する。
本稿では,この「テキストシーングラフ」の属性を用いて物体検知器を訓練する手法を提案する。
得られたモデルが、いくつかの挑戦的なオブジェクト検出データセットに対して、最先端の結果を達成することを実証的に実証した。
論文 参考訳(メタデータ) (2020-09-30T10:59:20Z) - Unsupervised Image Classification for Deep Representation Learning [42.09716669386924]
埋め込みクラスタリングを使わずに、教師なしのイメージ分類フレームワークを提案する。
提案手法の有効性を証明するために,ImageNetデータセットの実験を行った。
論文 参考訳(メタデータ) (2020-06-20T02:57:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。