On Quanta of Information and Electromagnetic Fields
- URL: http://arxiv.org/abs/2107.02786v3
- Date: Wed, 24 Nov 2021 10:24:33 GMT
- Title: On Quanta of Information and Electromagnetic Fields
- Authors: Masroor H. S. Bukhari
- Abstract summary: A model of meaningful quanta of information arising from the quantum vacuum is presented.
It is suggested that information in a deterministic form, as well as chaotic processes within the quantum vacuum, give rise to a possible condensation of information into quantum fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A preliminary model of meaningful quanta of information arising from the
quantum vacuum, and giving rise to the elementary quantum fields, is presented.
We attempt to establish an equivalence of information and physical action, with
the quanta (or packets of words) of information as a source of quantum fields
(with a possible role in governing the interactions among those), similar to
the quantum fields being the source of classical information. The information
and quantum fields emerge in an entangled form out of the quantum vacuum, with
their common underlying basis bearing intrinsically both a well-defined
deterministic (geometric) and probabilistic (stochastic) structure. The
description of equivalent energy of a quantum of the electromagnetic field, in
terms of its information content, as well as an expression of the signal power,
is provided. Various aspects of this problem and its possible implications and
repercussions on our understanding of elementary quantum fields and their
interactions are discussed. It is suggested that information, in a
deterministic form, as well as chaotic processes within the quantum vacuum,
give rise to a possible condensation of information into quantum fields.
Related papers
- Information scrambling -- a quantum thermodynamic perspective [0.0]
Recent advances in quantum information science have shed light on the intricate dynamics of quantum many-body systems.
This perspective aims at synthesizing key findings from several pivotal studies and exploring various aspects of quantum scrambling.
arXiv Detail & Related papers (2024-01-10T18:15:09Z) - Quantum stochastic trajectories for particles and fields based on
positive P-representation [0.0]
We introduce a phase-space description based on the positive P representation for bosonic fields interacting with a system of quantum emitters.
The formalism is applicable to collective light-matter interactions and open quantum systems with decoherence.
A potential future application is the quantum mechanical description of collective spontaneous emission of an incoherently pumped ensemble of atoms.
arXiv Detail & Related papers (2023-06-30T08:38:47Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum information entropy of a particle trapped by the
Aharonov-Bohm-type effect [4.8244546750150965]
We investigate the quantum information entropy of a particle trapped by the Aharonov-Bohm-type effect.
For quantum information study, it is necessary to investigate the eigenstates of the quantum system.
arXiv Detail & Related papers (2022-12-19T01:39:17Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Cost of quantum entanglement simplified [13.683637401785505]
We introduce an entanglement measure that has a precise information-theoretic meaning as the exact cost required to prepare an entangled state.
Our results bring key insights into the fundamental entanglement structure of arbitrary quantum states, and they can be used directly to assess and quantify the entanglement produced in quantum-physical experiments.
arXiv Detail & Related papers (2020-07-28T14:36:23Z) - Observing Quasiparticles through the Entanglement Lens [0.0]
We argue that the salient features of the quasiparticles, including their quantum numbers, locality and fractionalization are reflected in the entanglement spectrum and in the mutual information.
We illustrate these ideas in the specific context of the $d=1$ transverse field Ising model with an integrability breaking perturbation.
arXiv Detail & Related papers (2020-07-08T18:00:00Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.