論文の概要: A multi-agent model for growing spiking neural networks
- arxiv url: http://arxiv.org/abs/2010.15045v1
- Date: Mon, 21 Sep 2020 15:11:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 04:07:05.830226
- Title: A multi-agent model for growing spiking neural networks
- Title(参考訳): スパイクニューラルネットワーク育成のためのマルチエージェントモデル
- Authors: Javier Lopez Randulfe, Leon Bonde Larsen
- Abstract要約: このプロジェクトでは、学習メカニズムとして、スパイキングニューラルネットワークのニューロン間の接続を拡大するためのルールについて検討している。
シミュレーション環境での結果は、与えられたパラメータセットに対して、テストされた関数を再現するトポロジに到達可能であることを示した。
このプロジェクトはまた、モデルパラメーターに最適な値を得るために、遺伝的アルゴリズムのようなテクニックを使用するための扉を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence has looked into biological systems as a source of
inspiration. Although there are many aspects of the brain yet to be discovered,
neuroscience has found evidence that the connections between neurons
continuously grow and reshape as a part of the learning process. This differs
from the design of Artificial Neural Networks, that achieve learning by
evolving the weights in the synapses between them and their topology stays
unaltered through time.
This project has explored rules for growing the connections between the
neurons in Spiking Neural Networks as a learning mechanism. These rules have
been implemented on a multi-agent system for creating simple logic functions,
that establish a base for building up more complex systems and architectures.
Results in a simulation environment showed that for a given set of parameters
it is possible to reach topologies that reproduce the tested functions.
This project also opens the door to the usage of techniques like genetic
algorithms for obtaining the best suited values for the model parameters, and
hence creating neural networks that can adapt to different functions.
- Abstract(参考訳): 人工知能は生物学的システムにインスピレーションを与えている。
脳には未発見の多くの側面があるが、神経科学はニューロン間のつながりが継続的に成長し、学習プロセスの一部として再形成する証拠を見出している。
これは、ニューラルネットワークの設計と異なり、それらとそれらのトポロジの間のシナプスの重みを進化させることで学習を実現する。
このプロジェクトは、学習メカニズムとしてスパイキングニューラルネットワークにおけるニューロン間の接続を拡大するためのルールを探求している。
これらのルールは、より複雑なシステムやアーキテクチャを構築する基盤となる、単純な論理関数を作成するためのマルチエージェントシステムに実装されている。
シミュレーション環境における結果は、与えられたパラメータのセットに対して、テストされた関数を再現するトポロジに到達できることを示した。
このプロジェクトはまた、モデルパラメータの最適な値を取得するための遺伝的アルゴリズムのようなテクニックの使用への扉を開き、それによって異なる機能に適応できるニューラルネットワークを作成する。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - An Artificial Neural Network Functionalized by Evolution [2.0625936401496237]
フィードフォワードニューラルネットワークのテンソル計算と擬似ダーウィン機構を組み合わせたハイブリッドモデルを提案する。
これにより、戦略の解明、制御問題、パターン認識タスクに適したトポロジを見つけることができる。
特に、このモデルは初期の進化段階に適応したトポロジを提供し、ロボット工学、ビッグデータ、人工生命に応用できる「構造収束」を提供することができる。
論文 参考訳(メタデータ) (2022-05-16T14:49:58Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Neural population geometry: An approach for understanding biological and
artificial neural networks [3.4809730725241605]
生体および人工ニューラルネットワークの機能に関する洞察を提供する幾何学的アプローチの例を概観する。
神経集団幾何学は、生体と人工のニューラルネットワークにおける構造と機能の理解を統一する可能性がある。
論文 参考訳(メタデータ) (2021-04-14T18:10:34Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。