論文の概要: Learning Governing Equations of Unobserved States in Dynamical Systems
- arxiv url: http://arxiv.org/abs/2404.18572v2
- Date: Tue, 7 May 2024 11:02:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:43:54.999182
- Title: Learning Governing Equations of Unobserved States in Dynamical Systems
- Title(参考訳): 力学系における未観測状態の統治方程式の学習
- Authors: Gevik Grigorian, Sandip V. George, Simon Arridge,
- Abstract要約: 我々は、部分的に観測された力学系の制御方程式を学習するために、ハイブリッドニューラルネットワークODE構造を用いる。
本手法は, 観測されていない状態の真の支配方程式の学習に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven modelling and scientific machine learning have been responsible for significant advances in determining suitable models to describe data. Within dynamical systems, neural ordinary differential equations (ODEs), where the system equations are set to be governed by a neural network, have become a popular tool for this challenge in recent years. However, less emphasis has been placed on systems that are only partially-observed. In this work, we employ a hybrid neural ODE structure, where the system equations are governed by a combination of a neural network and domain-specific knowledge, together with symbolic regression (SR), to learn governing equations of partially-observed dynamical systems. We test this approach on two case studies: A 3-dimensional model of the Lotka-Volterra system and a 5-dimensional model of the Lorenz system. We demonstrate that the method is capable of successfully learning the true underlying governing equations of unobserved states within these systems, with robustness to measurement noise.
- Abstract(参考訳): データ駆動モデリングと科学機械学習は、データを記述するのに適したモデルを決定する上で大きな進歩を担っている。
力学系の中では、システム方程式がニューラルネットワークによって制御されるように設定されているニューラル常微分方程式(ODE)が近年、この課題の一般的なツールとなっている。
しかし、部分的にしか守られていないシステムにはあまり重点を置いていない。
本研究では,システム方程式をニューラルネットワークとドメイン固有知識の組み合わせと記号回帰(SR)の組み合わせで制御し,部分的に観測された力学系の制御方程式を学習するハイブリッドニューラルネットワークODE構造を用いる。
このアプローチは、ロトカ・ボルテラ系の3次元モデルとローレンツ系の5次元モデルという2つのケーススタディで検証する。
本手法は, 観測ノイズに頑健さを伴って, 観測対象外状態の真の支配方程式を学習できることを実証する。
関連論文リスト
- Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGは、ネットワーク構造をスパースレグレッションに組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - AI-Lorenz: A physics-data-driven framework for black-box and gray-box
identification of chaotic systems with symbolic regression [2.07180164747172]
複雑な動的挙動をモデル化した数学的表現を学習するフレームワークを開発する。
私たちは、システムのダイナミクス、時間の変化率、モデル用語の欠如を学ぶために、小さなニューラルネットワークをトレーニングします。
これにより、動的挙動の将来的な進化を予測することができる。
論文 参考訳(メタデータ) (2023-12-21T18:58:41Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
このマップは、重みがモデル化されたシステムをエンコードする人工知能ニューラルネットワークとして構築されている。
ローレンツ系、ロースラー系およびヒンドマール・ロースニューロンを考察する。
誘引子、パワースペクトル、分岐図、リャプノフ指数の視覚像に高い類似性が観察される。
論文 参考訳(メタデータ) (2021-03-06T16:02:41Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
各種グレーボックス設定における動的モデルの学習方法であるNeural Dynamical Systems (NDS)を紹介する。
NDSはニューラルネットワークを使用してシステムの自由パラメータを推定し、残余項を予測し、将来状態を予測するために時間とともに数値的に統合する。
論文 参考訳(メタデータ) (2020-06-23T00:50:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。