論文の概要: AGD-Autoencoder: Attention Gated Deep Convolutional Autoencoder for
Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2107.03323v1
- Date: Wed, 7 Jul 2021 16:01:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 15:59:17.654267
- Title: AGD-Autoencoder: Attention Gated Deep Convolutional Autoencoder for
Brain Tumor Segmentation
- Title(参考訳): AGD-Autoencoder:脳腫瘍分離用深部畳み込みオートエンコーダ
- Authors: Tim Cvetko
- Abstract要約: そこで我々は,脳腫瘍セグメンテーションのための新しいアテンションゲート(AGモデル)を提案する。
AGはディープ畳み込みニューラルネットワーク(CNN)に統合できる
我々は、エッジ検出器とアテンションゲート機構が、脳のセグメンテーションを0.78のIOUに到達させるのに十分な方法であることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Brain tumor segmentation is a challenging problem in medical image analysis.
The endpoint is to generate the salient masks that accurately identify brain
tumor regions in an fMRI screening. In this paper, we propose a novel attention
gate (AG model) for brain tumor segmentation that utilizes both the edge
detecting unit and the attention gated network to highlight and segment the
salient regions from fMRI images. This feature enables us to eliminate the
necessity of having to explicitly point towards the damaged area(external
tissue localization) and classify(classification) as per classical computer
vision techniques. AGs can easily be integrated within the deep convolutional
neural networks(CNNs). Minimal computional overhead is required while the AGs
increase the sensitivity scores significantly. We show that the edge detector
along with an attention gated mechanism provide a sufficient enough method for
brain segmentation reaching an IOU of 0.78
- Abstract(参考訳): 脳腫瘍のセグメンテーションは、医療画像解析において難しい問題である。
エンドポイントは、fmriスクリーニングで脳腫瘍領域を正確に識別するサルエントマスクを生成することである。
本稿では、エッジ検出ユニットとアテンションゲートネットワークの両方を利用して、fMRI画像から局所領域の強調と分割を行う脳腫瘍セグメンテーションのための新しいアテンションゲート(AGモデル)を提案する。
この特徴により、損傷領域(外部組織局在)を明示的に指さし、古典的なコンピュータビジョン技術に従って分類(分類)する必要がなくなる。
AGはディープ畳み込みニューラルネットワーク(CNN)に容易に統合できる。
最小の計算オーバーヘッドが必要であり、AGは感度を著しく向上させる。
注意ゲート機構と併用したエッジ検出器は,0.78のiouに達する十分な脳セグメンテーション手法を提供する。
関連論文リスト
- An Integrated Deep Learning Framework for Effective Brain Tumor Localization, Segmentation, and Classification from Magnetic Resonance Images [0.0]
脳内の腫瘍は、様々な種類の脳細胞から生じる脳組織内の異常な細胞増殖によって生じる。
本研究は,MRI画像からのグリオーマの局在,セグメンテーション,分類のためのDLフレームワークを提案する。
提案モデルでは,早期診断を可能とし,患者に対してより正確な治療オプションを提供することで,医療用AIの進歩を期待できる結果が得られた。
論文 参考訳(メタデータ) (2024-09-25T18:38:57Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Category Guided Attention Network for Brain Tumor Segmentation in MRI [6.685945448824158]
カテゴリー案内注意U-Net(CGA U-Net)という新しいセグメンテーションネットワークを提案する。
本モデルでは,より正確かつ安定した特徴写像の長距離依存性を計算コストを伴わずに捉えることのできる,注目機構に基づくスーパービジョンアテンションモジュール(SAM)を設計する。
BraTS 2019データセットの実験的結果は、提案手法がセグメント化性能と計算複雑性の両方において最先端のアルゴリズムより優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T09:22:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - FocusNetv2: Imbalanced Large and Small Organ Segmentation with
Adversarial Shape Constraint for Head and Neck CT Images [82.48587399026319]
organ-at-risk (oars) は、健康な臓器の損傷を避けるために放射線治療計画において重要なステップである。
本研究では,この課題を解決するために,2段階の深層ニューラルネットワークであるFocusNetv2を提案する。
従来のFocusNetに加えて,小臓器に新たな対角的形状制約を導入し,推定小臓器形状と臓器形状との整合性を確保する。
論文 参考訳(メタデータ) (2021-04-05T04:45:31Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
そこで我々は,腫瘍周辺で最小の境界ボックスを見つけるために,軽量計算量で高速かつ自動化された手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
論文 参考訳(メタデータ) (2020-02-26T14:10:40Z) - DVNet: A Memory-Efficient Three-Dimensional CNN for Large-Scale
Neurovascular Reconstruction [1.9199289015460215]
画素単位のセマンティックセマンティックセグメンテーションのための,完全畳み込み,深層化,密結合型エンコーダデコーダを提案する。
提案ネットワークは,オープンソースベンチマークに適用したセマンティックセグメンテーション問題に対して,優れた性能を提供する。
論文 参考訳(メタデータ) (2020-02-04T22:39:58Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z) - Transfer Learning for Brain Tumor Segmentation [0.6408773096179187]
グリオーマは、化学療法や手術で治療される最も一般的な悪性脳腫瘍である。
近年のディープラーニングの進歩により、様々な視覚認識タスクに優れた畳み込みニューラルネットワークアーキテクチャが実現されている。
本研究では,事前学習した畳み込みエンコーダを用いてFCNを構築し,この方法でトレーニングプロセスを安定させ,ダイススコアやハウスドルフ距離に対する改善を実現することを示す。
論文 参考訳(メタデータ) (2019-12-28T12:45:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。