論文の概要: Regularization-based Continual Learning for Fault Prediction in
Lithium-Ion Batteries
- arxiv url: http://arxiv.org/abs/2107.03336v1
- Date: Wed, 7 Jul 2021 16:24:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 14:14:39.082588
- Title: Regularization-based Continual Learning for Fault Prediction in
Lithium-Ion Batteries
- Title(参考訳): リチウムイオン電池の故障予測のための規則化に基づく連続学習
- Authors: Benjamin Maschler, Sophia Tatiyosyan and Michael Weyrich
- Abstract要約: 早期の予測とバッテリーの欠陥の堅牢な理解は、製品の品質を大幅に向上させる可能性がある。
データ駆動型障害予測の現在のアプローチは、トレーニングされたプロセスの正確な結果を提供する。
継続的な学習はそのような柔軟性を約束し、学習した知識を新しいタスクに自動的に適応させることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, the use of lithium-ion batteries has greatly expanded into
products from many industrial sectors, e.g. cars, power tools or medical
devices. An early prediction and robust understanding of battery faults could
therefore greatly increase product quality in those fields. While current
approaches for data-driven fault prediction provide good results on the exact
processes they were trained on, they often lack the ability to flexibly adapt
to changes, e.g. in operational or environmental parameters. Continual learning
promises such flexibility, allowing for an automatic adaption of previously
learnt knowledge to new tasks. Therefore, this article discusses different
continual learning approaches from the group of regularization strategies,
which are implemented, evaluated and compared based on a real battery wear
dataset. Online elastic weight consolidation delivers the best results, but, as
with all examined approaches, its performance appears to be strongly dependent
on task characteristics and task sequence.
- Abstract(参考訳): 近年、リチウムイオン電池の使用は、例えば、多くの産業分野の製品に拡大している。
車 電動工具 医療機器
初期の予測とバッテリーの欠陥の堅牢な理解は、これらの分野での製品品質を大幅に向上させる可能性がある。
データ駆動障害予測に対する現在のアプローチは、トレーニングされたプロセスの正確な結果を提供するが、多くの場合、変更に柔軟に適応する能力がない。
運用パラメータや環境パラメータなどです
継続的学習はこのような柔軟性を約束し、以前の学習した知識を新しいタスクに自動適応させることができる。
そこで本稿では,実際のバッテリ摩耗データセットに基づいて実装,評価,比較を行う正則化戦略群と,連続学習アプローチの違いについて述べる。
オンラインの弾性重み強化は最高の結果をもたらすが、すべての検討手法と同様に、その性能はタスク特性やタスクシーケンスに強く依存しているようである。
関連論文リスト
- Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
本稿では、バッテリパラメータ間で独立した依存性グラフ構造を組み込むことを共同で学習するバッテリグラフネットワークフレームワークを提案する。
提案手法は,市販のバッテリデータセットにおいて,いくつかの一般的な手法よりも優れた性能を示し,SOTA性能を実現する。
論文 参考訳(メタデータ) (2024-08-14T15:44:56Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
機械学習を用いた非線形力学系の制御は、システムを周期性のような単純な振る舞いに駆動するだけでなく、より複雑な任意の力学を駆動する。
まず, 従来の貯水池計算が優れていることを示す。
次のステップでは、これらの結果を異なるトレーニングデータに基づいて比較し、代わりに次世代貯水池コンピューティングを使用する別のセットアップと比較する。
その結果、通常のトレーニングデータに対して同等のパフォーマンスを提供する一方で、次世代RCは、非常に限られたデータしか利用できない状況において、著しくパフォーマンスが向上していることがわかった。
論文 参考訳(メタデータ) (2023-07-14T07:05:17Z) - Enhanced Gaussian Process Dynamical Models with Knowledge Transfer for
Long-term Battery Degradation Forecasting [0.9208007322096533]
電気自動車のバッテリーの寿命や寿命の予測は、決定的かつ困難な問題だ。
多数のアルゴリズムが、バッテリ管理システムが収集したデータから利用できる機能を組み込んでいる。
この制限を克服できる高精度な手法を開発した。
論文 参考訳(メタデータ) (2022-12-03T12:59:51Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
本稿では,少数の電圧/電流サンプルから同時に老化状態を推定できるトランスフォーマーに基づく新しいディープラーニングアーキテクチャを提案する。
実験の結果, 学習モデルは様々な複雑さの入力電流分布に有効であり, 広範囲の劣化レベルに対して堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-06-01T15:31:06Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
本稿では,Kristen A. Seversonらが実施したデータと手法を用いて,研究チームが使用した方法論を探索する。
基本的な取り組みは、機械学習技術が、バッテリー容量を正確に予測するために、早期ライフサイクルデータを使用するように訓練されているかどうかを確認することである。
論文 参考訳(メタデータ) (2021-10-19T01:35:12Z) - Simple statistical models and sequential deep learning for Lithium-ion
batteries degradation under dynamic conditions: Fractional Polynomials vs
Neural Networks [1.8899300124593648]
リチウム イオン電池の長寿そして安全は電池の作動条件の有効な監視そして調節によって促進されます。
バッテリー管理システム上の状態の健康(SoH)監視のための迅速かつ正確なアルゴリズムを実装することが重要です。
本稿では,長期記憶ニューラルネットワークと多変量多項回帰の2つのデータ駆動手法を提案し,比較する。
論文 参考訳(メタデータ) (2021-02-16T12:26:23Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
本稿では,ロボットによるロボット操作ポリシーを,政治以外の強化学習を通じて微調整することで,新たなバリエーションに適応する方法を示す。
この適応は、タスクをゼロから学習するために必要なデータの0.2%未満を使用する。
事前訓練されたポリシーを適用するという私たちのアプローチは、微調整の過程で大きなパフォーマンス向上につながります。
論文 参考訳(メタデータ) (2020-04-21T17:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。