論文の概要: Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation
- arxiv url: http://arxiv.org/abs/2408.07624v1
- Date: Wed, 14 Aug 2024 15:44:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 12:53:17.491897
- Title: Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation
- Title(参考訳): バッテリグラフネット : リチウムイオン電池(LiBs)寿命推定のための関係学習
- Authors: Sakhinana Sagar Srinivas, Rajat Kumar Sarkar, Venkataramana Runkana,
- Abstract要約: 本稿では、バッテリパラメータ間で独立した依存性グラフ構造を組み込むことを共同で学習するバッテリグラフネットワークフレームワークを提案する。
提案手法は,市販のバッテリデータセットにおいて,いくつかの一般的な手法よりも優れた性能を示し,SOTA性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Battery life estimation is critical for optimizing battery performance and guaranteeing minimal degradation for better efficiency and reliability of battery-powered systems. The existing methods to predict the Remaining Useful Life(RUL) of Lithium-ion Batteries (LiBs) neglect the relational dependencies of the battery parameters to model the nonlinear degradation trajectories. We present the Battery GraphNets framework that jointly learns to incorporate a discrete dependency graph structure between battery parameters to capture the complex interactions and the graph-learning algorithm to model the intrinsic battery degradation for RUL prognosis. The proposed method outperforms several popular methods by a significant margin on publicly available battery datasets and achieves SOTA performance. We report the ablation studies to support the efficacy of our approach.
- Abstract(参考訳): バッテリー寿命推定は、バッテリー性能を最適化し、バッテリー駆動システムの効率と信頼性を向上させるために最小限の劣化を保証するために重要である。
リチウムイオン電池(LiBs)の残留実用寿命(RUL)を予測する既存の方法は、非線形劣化軌跡をモデル化するために電池パラメータの関連性を無視している。
本稿では、複雑な相互作用を捉えるために、電池パラメータ間で独立した依存グラフ構造を組み込むことを共同で学習するBattery GraphNetsフレームワークと、RUL予後のための固有のバッテリ劣化をモデル化するためのグラフ学習アルゴリズムを提案する。
提案手法は,市販のバッテリデータセットにおいて,いくつかの一般的な手法よりも優れた性能を示し,SOTA性能を実現する。
本研究は,我々のアプローチの有効性を支えるためのアブレーション研究を報告する。
関連論文リスト
- DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence [21.867940190460704]
リチウムイオン電池の残留実用寿命(RUL)は、安全性を確保し、メンテナンスコストを低減し、使用を最適化するために不可欠である。
本研究では,NASAのPrognostics Center of Excellenceのデータセットに適用した,特徴工学とDLinearに基づく正確なRUL予測手法を提案する。
論文 参考訳(メタデータ) (2025-01-20T15:28:20Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
本稿では,一段階の効率的なセルトラッキングを実現するために,新しいエンドツーエンドCAPフレームワークを提案する。
CAPは検出またはセグメンテーション段階を放棄し、細胞点の軌跡間の相関を利用して細胞を共同で追跡することでプロセスを単純化する。
Capは強力なセルトラッキング性能を示し、既存の方法の10倍から55倍の効率を示している。
論文 参考訳(メタデータ) (2024-11-22T10:16:35Z) - Remaining Useful Life Prediction for Batteries Utilizing an Explainable AI Approach with a Predictive Application for Decision-Making [0.0]
バッテリーRULを予測・分類するための機械学習モデルを開発した。
提案したTLEモデルはRMSE, MAE, R二乗誤差のベースラインモデルより一貫して優れている。
XGBoostは、クロスバリデーション技術によって検証された99%の分類精度を達成した。
論文 参考訳(メタデータ) (2024-09-26T15:08:38Z) - Overcoming Pitfalls in Graph Contrastive Learning Evaluation: Toward
Comprehensive Benchmarks [60.82579717007963]
本稿では,グラフコントラスト学習(GCL)手法の有効性,一貫性,全体的な能力をより正確に評価するために,拡張された評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-24T01:47:56Z) - Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks [4.249657064343807]
リチウムイオン電池は、電気自動車や再生可能エネルギー貯蔵など様々な用途で広く使われている。
電池の残存寿命(RUL)の予測は信頼性と効率の確保に不可欠である。
本稿では, 時空間アテンションネットワーク(ST-MAN)を用いたリチウムイオン電池の2段階RUL予測手法を提案する。
論文 参考訳(メタデータ) (2023-10-29T07:32:32Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
本稿では,リチウムイオン電池の寿命を推定するための既存手法について概説する。
リチウムイオン電池の寿命を正確に予測するための機械学習技術に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T15:35:31Z) - GAETS: A Graph Autoencoder Time Series Approach Towards Battery
Parameter Estimation [0.0]
リチウムイオン電池は、現在進行中の輸送革命に力を入れている。
電気自動車の走行距離を推定するためには、バッテリーパラメータの正確な推定が不可欠である。
グラフに基づく推定手法により、推定を改善するためにそれらを支える変数を理解することができる。
論文 参考訳(メタデータ) (2021-11-17T16:04:01Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits [71.28712804110974]
本稿では,UAVの切断時間,ハンドオーバ速度,エネルギー消費を低減するため,MAB(Multi-armed bandit)アルゴリズムを提案する。
それぞれの性能指標(PI)が、適切な学習パラメータの範囲を採用することにより、どのように改善されるかを示す。
論文 参考訳(メタデータ) (2020-09-21T12:35:23Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。