論文の概要: DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2501.11542v1
- Date: Mon, 20 Jan 2025 15:28:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:19:36.085938
- Title: DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence
- Title(参考訳): DLinearによるリチウムイオン電池の余寿命予測 : 説明可能な人工知能による特徴工学
- Authors: Minsu Kim, Jaehyun Oh, Sang-Young Lee, Junghwan Kim,
- Abstract要約: リチウムイオン電池の残留実用寿命(RUL)は、安全性を確保し、メンテナンスコストを低減し、使用を最適化するために不可欠である。
本研究では,NASAのPrognostics Center of Excellenceのデータセットに適用した,特徴工学とDLinearに基づく正確なRUL予測手法を提案する。
- 参考スコア(独自算出の注目度): 21.867940190460704
- License:
- Abstract: Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for ensuring safety, reducing maintenance costs, and optimizing usage. However, predicting RUL is challenging due to the nonlinear characteristics of the degradation caused by complex chemical reactions. Machine learning allows precise predictions by learning the latent functions of degradation relationships based on cycling behavior. This study introduces an accurate RUL prediction approach based on feature engineering and DLinear, applied to the dataset from NASA's Prognostics Center of Excellence. Among the 20 features generated from current, voltage, temperature, and time provided in this dataset, key features contributing to degradation are selected using Pearson correlation coefficient and Shapley values. Shapley value-based feature selection effectively reflects cell-to-cell variability, showing similar importance rankings across all cells. The DLinear-based RUL prediction using key features efficiently captures the time-series trend, demonstrating significantly better performance compared to Long Short-Term Memory and Transformer models.
- Abstract(参考訳): リチウムイオン電池の残留実用寿命(RUL)の正確な予測は、安全性の確保、メンテナンスコストの削減、使用量の最適化に不可欠である。
しかし、複雑な化学反応による劣化の非線形特性のため、RULの予測は困難である。
機械学習は、サイクリング行動に基づいた劣化関係の潜伏関数を学習することで正確な予測を可能にする。
本研究では,NASAのPrognostics Center of Excellenceのデータセットに適用した,特徴工学とDLinearに基づく正確なRUL予測手法を提案する。
このデータセットで提供される電流、電圧、温度、時間から生じる20の特徴のうち、Pearson相関係数とShapley値を用いて劣化に寄与する重要な特徴を選択する。
共有値に基づく特徴選択は、細胞間変異を効果的に反映し、すべての細胞で同様の重要なランキングを示す。
重要な特徴を用いたDLinearベースのRUL予測は時系列トレンドを効果的に捉え、Long Short-Term MemoryとTransformerモデルと比較して大幅にパフォーマンスが向上した。
関連論文リスト
- Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
本稿では、バッテリパラメータ間で独立した依存性グラフ構造を組み込むことを共同で学習するバッテリグラフネットワークフレームワークを提案する。
提案手法は,市販のバッテリデータセットにおいて,いくつかの一般的な手法よりも優れた性能を示し,SOTA性能を実現する。
論文 参考訳(メタデータ) (2024-08-14T15:44:56Z) - Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
本研究では、生成AIモデルの条件として、EOL(End of Life)とECL(Equivalent Cycle Life)を紹介する。
CVAEモデルに埋め込み層を組み込むことにより, RCVAE(Refined Conditional Variational Autoencoder)を開発した。
準ビデオ形式にプリプロセッシングすることで、電圧、電流、温度、充電容量を含む電気化学データの総合的な合成を実現する。
この方法は、リチウム電池データの人工合成のための新しい研究領域を開拓する、包括的な電気化学データセットを提供する。
論文 参考訳(メタデータ) (2024-04-11T09:08:45Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
TRIAGEは回帰タスクに適した新しいデータキャラクタリゼーションフレームワークで、広範囲の回帰器と互換性がある。
TRIAGEは、共形予測分布を利用して、モデルに依存しないスコアリング方法、TRIAGEスコアを提供する。
TRIAGEの特徴は一貫性があり、複数の回帰設定においてデータの彫刻/フィルタリングによるパフォーマンス向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-29T10:31:59Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Enhanced Gaussian Process Dynamical Models with Knowledge Transfer for
Long-term Battery Degradation Forecasting [0.9208007322096533]
電気自動車のバッテリーの寿命や寿命の予測は、決定的かつ困難な問題だ。
多数のアルゴリズムが、バッテリ管理システムが収集したデータから利用できる機能を組み込んでいる。
この制限を克服できる高精度な手法を開発した。
論文 参考訳(メタデータ) (2022-12-03T12:59:51Z) - Interpretable Battery Cycle Life Range Prediction Using Early
Degradation Data at Cell Level [0.8137198664755597]
量的回帰フォレスト(QRF)モデルを導入し、不確かさを定量化してサイクル寿命範囲を予測する。
データ駆動方式は, 電池劣化機構の最小限の知識で, 電池サイクル寿命のポイント予測を行う手法として提案されている。
最終QRFモデルの解釈可能性については,2つの大域的モデルに依存しない手法を用いて検討した。
論文 参考訳(メタデータ) (2022-04-26T16:26:27Z) - Regularization-based Continual Learning for Fault Prediction in
Lithium-Ion Batteries [0.0]
早期の予測とバッテリーの欠陥の堅牢な理解は、製品の品質を大幅に向上させる可能性がある。
データ駆動型障害予測の現在のアプローチは、トレーニングされたプロセスの正確な結果を提供する。
継続的な学習はそのような柔軟性を約束し、学習した知識を新しいタスクに自動的に適応させることができる。
論文 参考訳(メタデータ) (2021-07-07T16:24:18Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。