論文の概要: An Orchestration Platform that Puts Radiologists in the Driver's Seat of
AI Innovation: A Methodological Approach
- arxiv url: http://arxiv.org/abs/2107.04409v1
- Date: Tue, 6 Jul 2021 20:32:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 12:29:11.360647
- Title: An Orchestration Platform that Puts Radiologists in the Driver's Seat of
AI Innovation: A Methodological Approach
- Title(参考訳): AIイノベーションのドライバシートに放射線科医を配置するオーケストレーションプラットフォーム:方法論的アプローチ
- Authors: Raphael Y. Cohen, Aaron D. Sodickson
- Abstract要約: 放射線学における現在のAI駆動の研究は、しばしば小規模で資源に制限された研究室にアクセスできないリソースと専門知識を必要とする。
現在の画像データはクリニック指向であり、機械学習イニシアチブに容易に対応できない。
インフラやプラットフォームのニーズに対処するために開発したシステムや方法論について述べるとともに、導入する人員やリソースの障壁を減らす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current AI-driven research in radiology requires resources and expertise that
are often inaccessible to small and resource-limited labs. The clinicians who
are able to participate in AI research are frequently well-funded,
well-staffed, and either have significant experience with AI and computing, or
have access to colleagues or facilities that do. Current imaging data is
clinician-oriented and is not easily amenable to machine learning initiatives,
resulting in inefficient, time consuming, and costly efforts that rely upon a
crew of data engineers and machine learning scientists, and all too often
preclude radiologists from driving AI research and innovation. We present the
system and methodology we have developed to address infrastructure and platform
needs, while reducing the staffing and resource barriers to entry. We emphasize
a data-first and modular approach that streamlines the AI development and
deployment process while providing efficient and familiar interfaces for
radiologists, such that they can be the drivers of new AI innovations.
- Abstract(参考訳): 放射線学における現在のAI駆動の研究は、しばしば小規模で資源に制限された研究室にアクセスできないリソースと専門知識を必要とする。
AI研究に参加することができる臨床医は、しばしば資金が豊富で、資金が潤沢で、AIやコンピューティングで重要な経験を持つか、同僚や施設にアクセスすることができる。
現在の画像データは臨床向きであり、機械学習のイニシアチブに容易に適応できないため、データエンジニアや機械学習科学者の乗組員に依存する非効率、時間的消費、コストのかかる努力が生まれ、放射線科医がai研究やイノベーションを推進することを妨げることが多い。
インフラやプラットフォームのニーズに対応するために開発したシステムや方法論について述べるとともに、導入する人員やリソースの障壁を減らす。
我々は、AI開発とデプロイメントプロセスを合理化しつつ、新しいAIイノベーションの原動力となるように、放射線学者に効率的で親しみやすいインターフェースを提供する、データファーストでモジュラーなアプローチを強調します。
関連論文リスト
- Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
遺伝性網膜疾患(英: InheritedRetinal disease、IRD)は、進行性視力低下を引き起こす多様な遺伝性疾患群であり、労働年齢層の視覚障害の主要な原因である。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
論文 参考訳(メタデータ) (2024-10-10T03:14:51Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - A general-purpose AI assistant embedded in an open-source radiology
information system [0.0]
我々は,このプラットフォームの新規なHuman-AIパートナーシップ機能について述べる。
我々は、RIS内でアクティブな学習戦略を開発し、人間の放射線学者がAIアノテーションを有効/無効にし、AIアノテーションを「修正」/「延長」することができるようにした。
これにより、放射線技師のユーザと、ユーザ固有のAIモデルとのパートナーシップを確立することができる。
論文 参考訳(メタデータ) (2023-03-18T05:27:43Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
近年、従来の医療システムを変革する試みとして、デジタル医療の研究が急速に増加している。
コンピュータによるオーディションは、少なくとも商業的関心の面では遅れている。
実生活における聴覚信号の分析に必要な基礎技術に対応する聴覚、計算とデータ効率の進歩、個々の差異を考慮し、医療データの長手性を扱う聴覚。
論文 参考訳(メタデータ) (2023-01-25T09:25:08Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
本報告は, MonAIコンソーシアムの業界専門家と臨床医のグループによる, 週ごとの議論と問題解決経験について述べる。
実験室におけるAIモデル開発とその後の臨床展開の障壁を明らかにする。
臨床放射線学ワークフローにおける様々なAI統合ポイントについて論じる。
論文 参考訳(メタデータ) (2022-12-29T05:17:59Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
AIモデルの開発に欠かせない役割にもかかわらず、アクティブラーニングの研究は他の研究の方向性ほど集中的ではない。
データ自動化の課題に対処し、自動化された機械学習システムに対処することによって、アクティブな学習はAI技術の民主化を促進する。
論文 参考訳(メタデータ) (2022-11-27T13:07:14Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
強化学習(RL)アルゴリズムは、ロボットシステムの自律的なスキル獲得を可能にするという約束を持っている。
現実のロボットRLは、通常、環境をリセットするためにデータ収集と頻繁な人間の介入を必要とする。
本研究では,従来のタスクから収集した多様なオフラインデータセットを効果的に活用することで,これらの課題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2022-07-11T08:31:22Z) - Challenges and Opportunities of Edge AI for Next-Generation Implantable
BMIs [6.385006149689549]
次世代脳-機械インタフェース(BMI)におけるオンチップAIの新たな可能性について概観する。
我々は,新しい世代のAI強化BMIと高チャネル数BMIを実現するために,アルゴリズムおよびIC設計ソリューションを提案する。
論文 参考訳(メタデータ) (2022-04-04T12:47:07Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。