Group-Conditional Conformal Prediction via Quantile Regression
Calibration for Crop and Weed Classification
- URL: http://arxiv.org/abs/2308.15094v1
- Date: Tue, 29 Aug 2023 08:02:41 GMT
- Title: Group-Conditional Conformal Prediction via Quantile Regression
Calibration for Crop and Weed Classification
- Authors: Paul Melki (IMS), Lionel Bombrun (IMS), Boubacar Diallo, J\'er\^ome
Dias, Jean-Pierre da Costa (IMS)
- Abstract summary: This article presents the conformal prediction framework that provides valid statistical guarantees on the predictive performance of any black box prediction machine.
The framework is exposed with a focus on its practical aspects and special attention accorded to the Adaptive Prediction Sets (APS) approach.
To tackle this shortcoming, group-conditional conformal approaches are presented.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As deep learning predictive models become an integral part of a large
spectrum of precision agricultural systems, a barrier to the adoption of such
automated solutions is the lack of user trust in these highly complex, opaque
and uncertain models. Indeed, deep neural networks are not equipped with any
explicit guarantees that can be used to certify the system's performance,
especially in highly varying uncontrolled environments such as the ones
typically faced in computer vision for agriculture.Fortunately, certain methods
developed in other communities can prove to be important for agricultural
applications. This article presents the conformal prediction framework that
provides valid statistical guarantees on the predictive performance of any
black box prediction machine, with almost no assumptions, applied to the
problem of deep visual classification of weeds and crops in real-world
conditions. The framework is exposed with a focus on its practical aspects and
special attention accorded to the Adaptive Prediction Sets (APS) approach that
delivers marginal guarantees on the model's coverage. Marginal results are then
shown to be insufficient to guarantee performance on all groups of individuals
in the population as characterized by their environmental and pedo-climatic
auxiliary data gathered during image acquisition.To tackle this shortcoming,
group-conditional conformal approaches are presented: the ''classical'' method
that consists of iteratively applying the APS procedure on all groups, and a
proposed elegant reformulation and implementation of the procedure using
quantile regression on group membership indicators. Empirical results showing
the validity of the proposed approach are presented and compared to the
marginal APS then discussed.
Related papers
- Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
The consistency of the resulting uncertainty values hinges on the premise that the learning function conforms to the properties specified by the GP model.
We propose to wed the GP with the prevailing conformal prediction (CP), a distribution-free post-processing framework that produces it prediction sets with a provably valid coverage.
arXiv Detail & Related papers (2024-10-07T19:22:15Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
The work introduces the Penalized Inverse Probability (PIP) nonconformity score, and its regularized version RePIP, that allow the joint optimization of both efficiency and informativeness.
The work shows how PIP-based conformal classifiers exhibit precisely the desired behavior in comparison with other nonconformity measures and strike a good balance between informativeness and efficiency.
arXiv Detail & Related papers (2024-06-13T07:37:16Z) - From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Hybrid Dynamic Contrast and Probability Distillation for Unsupervised
Person Re-Id [109.1730454118532]
Unsupervised person re-identification (Re-Id) has attracted increasing attention due to its practical application in the read-world video surveillance system.
We present the hybrid dynamic cluster contrast and probability distillation algorithm.
It formulates the unsupervised Re-Id problem into an unified local-to-global dynamic contrastive learning and self-supervised probability distillation framework.
arXiv Detail & Related papers (2021-09-29T02:56:45Z) - Cluster Regularization via a Hierarchical Feature Regression [0.0]
This paper proposes a novel cluster-based regularization - the hierarchical feature regression (HFR)
It mobilizes insights from the domains of machine learning and graph theory to estimate parameters along a supervised hierarchical representation of the predictor set.
An application to the prediction of economic growth is used to illustrate the HFR's effectiveness in an empirical setting.
arXiv Detail & Related papers (2021-07-10T13:03:01Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.