論文の概要: Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal Structure
- arxiv url: http://arxiv.org/abs/2406.19503v1
- Date: Thu, 27 Jun 2024 19:36:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 18:31:50.654793
- Title: Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal Structure
- Title(参考訳): 時間構造爆発による因果発見の有限サンプル性能の向上
- Authors: Christine W Bang, Janine Witte, Ronja Foraita, Vanessa Didelez,
- Abstract要約: 因果発見の方法は、データ駆動方式で因果構造を特定することを目的としている。
既存のアルゴリズムは不安定で統計的誤差に敏感であることが知られている。
本稿では,時間的構造,いわゆる階層的背景知識を利用するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methods of causal discovery aim to identify causal structures in a data driven way. Existing algorithms are known to be unstable and sensitive to statistical errors, and are therefore rarely used with biomedical or epidemiological data. We present an algorithm that efficiently exploits temporal structure, so-called tiered background knowledge, for estimating causal structures. Tiered background knowledge is readily available from, e.g., cohort or registry data. When used efficiently it renders the algorithm more robust to statistical errors and ultimately increases accuracy in finite samples. We describe the algorithm and illustrate how it proceeds. Moreover, we offer formal proofs as well as examples of desirable properties of the algorithm, which we demonstrate empirically in an extensive simulation study. To illustrate its usefulness in practice, we apply the algorithm to data from a children's cohort study investigating the interplay of diet, physical activity and other lifestyle factors for health outcomes.
- Abstract(参考訳): 因果発見の方法は、データ駆動方式で因果構造を特定することを目的としている。
既存のアルゴリズムは不安定で統計的誤差に敏感であることが知られており、生物医学や疫学のデータではほとんど使われていない。
本稿では,時間的構造,いわゆる階層的背景知識を効率的に活用し,因果構造を推定するアルゴリズムを提案する。
階層化されたバックグラウンド知識は、例えばコホートやレジストリデータから簡単に利用できる。
効率的に使用すると、アルゴリズムは統計的誤差に対してより堅牢になり、最終的には有限サンプルの精度を高める。
アルゴリズムを記述し、その進捗状況を説明する。
さらに,本アルゴリズムの望ましい特性の例として,形式的証明を提供し,広範なシミュレーション研究で実証実験を行った。
本研究は, 食生活, 身体活動, その他の生活習慣要因の相互関係について, 子どものコホート研究から得られたデータにアルゴリズムを適用した。
関連論文リスト
- Predictive Coding beyond Correlations [59.47245250412873]
このようなアルゴリズムのうちの1つは、予測符号化と呼ばれ、因果推論タスクを実行することができるかを示す。
まず、予測符号化の推論過程における簡単な変化が、因果グラフを再利用したり再定義したりすることなく、介入を計算できることを示す。
論文 参考訳(メタデータ) (2023-06-27T13:57:16Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
本稿では,生涯学習アルゴリズムの潜伏特性を推定するために,アルゴリズムに依存しないサロゲート・モデリング手法を提案する。
合成データを用いた実験により,これらの特性を推定するためのアプローチを検証する。
論文 参考訳(メタデータ) (2022-07-28T20:58:13Z) - A Meta-Reinforcement Learning Algorithm for Causal Discovery [3.4806267677524896]
因果構造は、モデルが純粋な相関に基づく推論を超えることを可能にする。
データから因果構造を見つけることは、計算の労力と精度の両方において大きな課題となる。
我々は,介入を学習することで因果発見を行うメタ強化学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-07-18T09:26:07Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
論文 参考訳(メタデータ) (2021-07-11T09:24:49Z) - Accelerating Recursive Partition-Based Causal Structure Learning [4.357523892518871]
帰納的因果探索アルゴリズムは、より小さなサブプロブレムで条件独立性テスト(CI)を用いて良い結果をもたらす。
本稿では,少数のCIテストと望ましくない関係を特定できる汎用因果構造改善戦略を提案する。
次に,合成および実データ集合における解の質と完了時間の観点から,最先端アルゴリズムに対する性能を実証的に評価する。
論文 参考訳(メタデータ) (2021-02-23T08:28:55Z) - Information fusion between knowledge and data in Bayesian network
structure learning [5.994412766684843]
本稿では,オープンソースのベイジィス構造学習システムで実装された情報融合手法について述べる。
結果は、限定データとビッグデータの両方で示され、ベイジスで利用可能なBN構造学習アルゴリズムが3つ適用されている。
論文 参考訳(メタデータ) (2021-01-31T15:45:29Z) - Causal Discovery from Incomplete Data using An Encoder and Reinforcement
Learning [2.4469484645516837]
新たなエンコーダと強化学習(RL)を用いて不完全データから因果構造を発見する手法を提案する。
エンコーダは、データ計算の欠如と特徴抽出のために設計されている。
本手法は不完全な観測データを入力として、因果構造グラフを生成する。
論文 参考訳(メタデータ) (2020-06-09T23:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。