LATTE: LSTM Self-Attention based Anomaly Detection in Embedded
Automotive Platforms
- URL: http://arxiv.org/abs/2107.05561v1
- Date: Mon, 12 Jul 2021 16:32:47 GMT
- Title: LATTE: LSTM Self-Attention based Anomaly Detection in Embedded
Automotive Platforms
- Authors: Vipin K. Kukkala, Sooryaa V. Thiruloga, Sudeep Pasricha
- Abstract summary: We present a novel anomaly detection framework called LATTE to detect cyber-attacks in Controller Area Network (CAN) based networks within automotive platforms.
Our proposed LATTE framework uses a stacked Long Short Term Memory (LSTM) predictor network with novel attention mechanisms to learn the normal operating behavior at design time.
We evaluate our proposed LATTE framework under different automotive attack scenarios and present a detailed comparison with the best-known prior works in this area.
- Score: 4.286327408435937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern vehicles can be thought of as complex distributed embedded systems
that run a variety of automotive applications with real-time constraints.
Recent advances in the automotive industry towards greater autonomy are driving
vehicles to be increasingly connected with various external systems (e.g.,
roadside beacons, other vehicles), which makes emerging vehicles highly
vulnerable to cyber-attacks. Additionally, the increased complexity of
automotive applications and the in-vehicle networks results in poor attack
visibility, which makes detecting such attacks particularly challenging in
automotive systems. In this work, we present a novel anomaly detection
framework called LATTE to detect cyber-attacks in Controller Area Network (CAN)
based networks within automotive platforms. Our proposed LATTE framework uses a
stacked Long Short Term Memory (LSTM) predictor network with novel attention
mechanisms to learn the normal operating behavior at design time. Subsequently,
a novel detection scheme (also trained at design time) is used to detect
various cyber-attacks (as anomalies) at runtime. We evaluate our proposed LATTE
framework under different automotive attack scenarios and present a detailed
comparison with the best-known prior works in this area, to demonstrate the
potential of our approach.
Related papers
- A Framework for the Systematic Assessment of Anomaly Detectors in Time-Sensitive Automotive Networks [0.4077787659104315]
We present an assessment framework that allows for reproducible, comparable, and rapid evaluation of anomaly detection algorithms.
We evaluate exemplary detection mechanisms and reveal how the detection performance is influenced by different combinations of TSN traffic flows and anomaly types.
arXiv Detail & Related papers (2024-05-02T14:29:42Z) - An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks [0.0]
In this study, we explore the detection of cyber threats in vehicle networks through ensemble-based machine learning.
We propose a model that uses Random Forest and CatBoost as our main investigators, with Logistic Regression used to then reason on their outputs to make a final decision.
We observe that our approach improves classification accuracy, and results in fewer misclassifications compared to previous works.
arXiv Detail & Related papers (2023-12-08T10:39:18Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
Intrusion Detection Systems (IDSs) that can identify malicious cyber-attacks have been developed.
We propose a novel ensemble IDS framework named Leader Class and Confidence Decision Ensemble (LCCDE)
LCCDE is constructed by determining the best-performing ML model among three advanced algorithms.
arXiv Detail & Related papers (2022-08-05T22:30:34Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Anomaly Detection in Intra-Vehicle Networks [0.0]
Modern vehicles are connected to a range of networks, including intra-vehicle networks and external networks.
With the loopholes in the existing traditional protocols, cyber-attacks on the vehicle network are rising drastically.
This paper discusses the security issues of the CAN bus protocol and proposes an Intrusion Detection System (IDS) that detects known attacks.
arXiv Detail & Related papers (2022-05-07T03:38:26Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
We propose a security hardening system for in-vehicle networks.
The proposed system includes two mechanisms that process deep features extracted from voltage signals measured on the CAN bus.
arXiv Detail & Related papers (2021-06-15T06:12:33Z) - MTH-IDS: A Multi-Tiered Hybrid Intrusion Detection System for Internet
of Vehicles [12.280524044112708]
A hybrid intrusion detection system (IDS) is proposed to detect both known and unknown attacks on vehicular networks.
The proposed system can detect various types of known attacks with 99.99% accuracy on the CAN-intrusion-dataset.
The average processing time of each data packet on a vehicle-level machine is less than 0.6 ms.
arXiv Detail & Related papers (2021-05-26T17:36:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.