Mixer-Phaser Ans\"atze for Quantum Optimization with Hard Constraints
- URL: http://arxiv.org/abs/2107.06651v2
- Date: Thu, 24 Feb 2022 16:40:40 GMT
- Title: Mixer-Phaser Ans\"atze for Quantum Optimization with Hard Constraints
- Authors: Ryan LaRose, Eleanor Rieffel and Davide Venturelli
- Abstract summary: We introduce parametrized circuit ans"atze and present the results of a numerical study comparing their performance with a standard Quantum Alternating Operator Ansatz approach.
The ans"atze are inspired by mixing and phase separation in the QAOA, and also motivated by compilation considerations with the aim of running on near-term superconducting quantum processors.
- Score: 1.011960004698409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce multiple parametrized circuit ans\"atze and present the results
of a numerical study comparing their performance with a standard Quantum
Alternating Operator Ansatz approach. The ans\"atze are inspired by mixing and
phase separation in the QAOA, and also motivated by compilation considerations
with the aim of running on near-term superconducting quantum processors. The
methods are tested on random instances of a weighted quadratic binary
constrained optimization problem that is fully connected for which the space of
feasible solutions has constant Hamming weight. For the parameter setting
strategies and evaluation metric used, the average performance achieved by the
QAOA is effectively matched by the one obtained by a "mixer-phaser" ansatz that
can be compiled in less than half-depth of standard QAOA on most
superconducting qubit processors.
Related papers
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling optimization challenges.
The requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices.
We introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians.
arXiv Detail & Related papers (2024-09-27T12:28:18Z) - Performance Upper Bound of Grover-Mixer Quantum Alternating Operator Ansatz [3.5023108034606256]
The Quantum Alternating Operator Ansatz (QAOA) represents a branch of quantum algorithms for solving optimization problems.
A specific variant, the Grover-Mixer Quantum Alternating Operator Ansatz (GM-QAOA), ensures uniform amplitude across states that share equivalent objective values.
We show that the GM-QAOA provides a quadratic enhancement in sampling probability and requires circuit depth that scales exponentially with problem size to maintain consistent performance.
arXiv Detail & Related papers (2024-05-06T05:47:27Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum Alternating Operator Ansatz (QAOA) beyond low depth with
gradually changing unitaries [0.0]
We study the underlying mechanisms governing the behavior of Quantum Alternating Operator Ansatz circuits.
We use the discrete adiabatic theorem, which complements and generalizes the insights obtained from the continuous-time adiabatic theorem.
Our analysis explains some general properties that are conspicuously depicted in the recently introduced QAOA performance diagrams.
arXiv Detail & Related papers (2023-05-08T04:21:42Z) - Bayesian Optimization for QAOA [0.0]
We present a Bayesian optimization procedure to optimise a quantum circuit.
We show that our approach allows for a significant reduction in the number of calls to the quantum circuit.
Our results suggest that the method proposed here is a promising framework to leverage the hybrid nature of QAOA on the noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2022-09-08T13:59:47Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Evaluation of QAOA based on the approximation ratio of individual
samples [0.0]
We simulate the performance of QAOA applied to the Max-Cut problem and compare it with some of the best classical alternatives.
Because of the evolving QAOA computational complexity-theoretic guidance, we utilize a framework for the search for quantum advantage.
arXiv Detail & Related papers (2020-06-08T18:00:18Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.