論文の概要: A comparative study of stochastic and deep generative models for
multisite precipitation synthesis
- arxiv url: http://arxiv.org/abs/2107.08074v1
- Date: Fri, 16 Jul 2021 18:35:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-20 15:17:55.707927
- Title: A comparative study of stochastic and deep generative models for
multisite precipitation synthesis
- Title(参考訳): 多地点沈殿合成のための確率的および深部生成モデルの比較研究
- Authors: Jorge Guevara, Dario Borges, Campbell Watson, Bianca Zadrozny
- Abstract要約: 我々は、IBMWeathergenとRPrecの2つのオープンソースの気象発生装置と、さまざまなメトリクスでGANとVAEの2つの深い生成モデルを比較した。
予備的な結果は,多地点降水合成タスクのためのディープラーニングアーキテクチャとアルゴリズムの設計を改善するためのガイドとして役立てることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future climate change scenarios are usually hypothesized using simulations
from weather generators. However, there only a few works comparing and
evaluating promising deep learning models for weather generation against
classical approaches. This study shows preliminary results making such
evaluations for the multisite precipitation synthesis task. We compared two
open-source weather generators: IBMWeathergen (an extension of the Weathergen
library) and RGeneratePrec, and two deep generative models: GAN and VAE, on a
variety of metrics. Our preliminary results can serve as a guide for improving
the design of deep learning architectures and algorithms for the multisite
precipitation synthesis task.
- Abstract(参考訳): 将来の気候変動シナリオは通常、気象発生器のシミュレーションを用いて仮説を立てる。
しかし、天気予報のための有望なディープラーニングモデルと古典的なアプローチを比較し評価する研究はごくわずかである。
本研究は多地点降水合成作業における予備的な評価結果を示す。
我々は、IBM Weathergen(Weathergenライブラリの拡張)とRGeneratePrecの2つのオープンソースの気象発生装置と、さまざまなメトリクスでGANとVAEの2つの深い生成モデルを比較した。
予備結果は,多地点沈殿合成タスクのための深層学習アーキテクチャとアルゴリズムの設計改善のためのガイドとして機能する。
関連論文リスト
- WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning [69.82211470647349]
第1次一般気象基礎モデル(WeatherGFM)を紹介する。
気象理解タスクの幅広い範囲を統一的な方法で解決する。
我々のモデルは、天気予報、超解像、天気画像翻訳、後処理など、最大10の気象理解タスクを効果的に処理できる。
論文 参考訳(メタデータ) (2024-11-08T09:14:19Z) - Advancing Meteorological Forecasting: AI-based Approach to Synoptic Weather Map Analysis [3.686808512438363]
本研究では,新しい事前処理手法と畳み込みオートエンコーダモデルを提案する。
このモデルでは、現在の大気条件にほぼ一致する歴史的シンフォティック気象図を認識できた。
論文 参考訳(メタデータ) (2024-11-08T07:46:50Z) - Multi-Source Temporal Attention Network for Precipitation Nowcasting [4.726419619132143]
降水量は様々な産業で重要であり、気候変動の緩和と適応に重要な役割を果たしている。
降水量予測のための効率的な深層学習モデルを導入し,既存の運用モデルよりも高い精度で降雨を最大8時間予測する。
論文 参考訳(メタデータ) (2024-10-11T09:09:07Z) - WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
我々は,地球近傍の地表面観測から得られた気象予報のための新しいベンチマークデータセットであるWeatherRealを紹介する。
本稿では,データセットの基盤となる情報源と処理手法を詳述するとともに,超局地的・極端な気象観測におけるその場観測の利点について述べる。
私たちの研究は、AIベースの天気予報研究を、よりアプリケーション中心で運用対応のアプローチへと進めることを目的としています。
論文 参考訳(メタデータ) (2024-09-14T08:53:46Z) - TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
本研究は,降雨の基盤となる物理的発生機構を十分に考慮した,新しい深層学習型降雨発生器を提案する。
その意義は、発電機が予想される雨をシミュレートするために雨の本質的な要素を精巧に設計するだけでなく、複雑で多様な雨のイメージに微妙に適応することにある。
提案した雨発生器が発生した雨は, 高品質であるだけでなく, 排水作業や下流作業にも有効であることを示す。
論文 参考訳(メタデータ) (2024-03-15T03:27:39Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
本稿では,降雨層に適合する動的降雨発生器を用いた半教師付きビデオデレーシング手法を提案する。
具体的には、1つのエミッションモデルと1つのトランジションモデルから成り、空間的物理的構造と時系列の雨の連続的な変化を同時にエンコードする。
ラベル付き合成およびラベルなしの実データのために、それらの基礎となる共通知識を十分に活用するために、様々な先行フォーマットが設計されている。
論文 参考訳(メタデータ) (2021-03-14T14:28:57Z) - Comparison between ARIMA and Deep Learning Models for Temperature
Forecasting [0.0]
本稿では,ARIMA(Auto Regressive Integrated Average)モデルとディープラーニングモデルを比較し,温度を推定する。
実験結果によると,ディープラーニングモデルは従来のARIMA手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-11-09T14:21:46Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。