論文の概要: Comparison between ARIMA and Deep Learning Models for Temperature
Forecasting
- arxiv url: http://arxiv.org/abs/2011.04452v1
- Date: Mon, 9 Nov 2020 14:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 00:15:38.387639
- Title: Comparison between ARIMA and Deep Learning Models for Temperature
Forecasting
- Title(参考訳): 温度予測のためのARIMAとディープラーニングモデルの比較
- Authors: Eranga De Saa and Lochandaka Ranathunga
- Abstract要約: 本稿では,ARIMA(Auto Regressive Integrated Average)モデルとディープラーニングモデルを比較し,温度を推定する。
実験結果によると,ディープラーニングモデルは従来のARIMA手法よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weather forecasting benefits us in various ways from farmers in cultivation
and harvesting their crops to airlines to schedule their flights. Weather
forecasting is a challenging task due to the chaotic nature of the atmosphere.
Therefore lot of research attention has drawn to obtain the benefits and to
overcome the challenges of weather forecasting. This paper compares ARIMA (Auto
Regressive Integrated Moving Average) model and deep learning models to
forecast temperature. The deep learning model consists of one dimensional
convolutional layers to extract spatial features and LSTM layers to extract
temporal features. Both of these models are applied to hourly temperature data
set from Szeged, Hungry. According to the experimental results deep learning
model was able to perform better than the traditional ARIMA methodology.
- Abstract(参考訳): 天気予報は、農業従事者や収穫する作物から航空会社まで、様々な方法で便を予定している。
気象予報は大気のカオス的な性質のために難しい課題である。
そのため、気象予報の課題を克服するために、多くの研究が注目されている。
本稿では,ARIMA(Auto Regressive Integrated Average)モデルとディープラーニングモデルを比較し,温度を推定する。
深層学習モデルは,空間的特徴を抽出する1次元畳み込み層と時間的特徴を抽出するLSTM層から構成される。
どちらのモデルも、szegedとhungryの時間毎の温度データに適用される。
実験結果によると,ディープラーニングモデルは従来のARIMA手法よりも優れた性能を示した。
関連論文リスト
- WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning [69.82211470647349]
第1次一般気象基礎モデル(WeatherGFM)を紹介する。
気象理解タスクの幅広い範囲を統一的な方法で解決する。
我々のモデルは、天気予報、超解像、天気画像翻訳、後処理など、最大10の気象理解タスクを効果的に処理できる。
論文 参考訳(メタデータ) (2024-11-08T09:14:19Z) - Advancing Meteorological Forecasting: AI-based Approach to Synoptic Weather Map Analysis [3.686808512438363]
本研究では,新しい事前処理手法と畳み込みオートエンコーダモデルを提案する。
このモデルでは、現在の大気条件にほぼ一致する歴史的シンフォティック気象図を認識できた。
論文 参考訳(メタデータ) (2024-11-08T07:46:50Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - How far are today's time-series models from real-world weather forecasting applications? [22.68937280154092]
WEATHER-5Kは、現実世界のシナリオをよりよく反映した観測気象データの包括的収集である。
これにより、モデルのより良いトレーニングと、TSFモデルの現実の予測能力のより正確な評価が可能になる。
我々は,学術的TSFモデルと実世界の天気予報アプリケーションとのギャップを,研究者に明確に評価する。
論文 参考訳(メタデータ) (2024-06-20T15:18:52Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - A comparative study of stochastic and deep generative models for
multisite precipitation synthesis [0.0]
我々は、IBMWeathergenとRPrecの2つのオープンソースの気象発生装置と、さまざまなメトリクスでGANとVAEの2つの深い生成モデルを比較した。
予備的な結果は,多地点降水合成タスクのためのディープラーニングアーキテクチャとアルゴリズムの設計を改善するためのガイドとして役立てることができる。
論文 参考訳(メタデータ) (2021-07-16T18:35:24Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
本稿では,高解像度気象データを予測するための新しいディープラーニングアーキテクチャを提案する。
我々の気象モデルは,ベースラインの深層学習モデルと比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-02-01T08:30:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。