論文の概要: A stepped sampling method for video detection using LSTM
- arxiv url: http://arxiv.org/abs/2107.08471v1
- Date: Sun, 18 Jul 2021 15:04:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-20 15:12:26.643431
- Title: A stepped sampling method for video detection using LSTM
- Title(参考訳): LSTMを用いたビデオ検出のためのステップサンプリング法
- Authors: Dengshan Li, Rujing Wang, Chengjun Xie
- Abstract要約: 繰り返し入力」に基づくステップサンプリング手法を提案する。
我々はLSTMモデルにデータを段階的にバッチで繰り返し入力した。
PyTorchの従来のサンプルと比較して、提案したステップサンプルのトレーニング損失はより速く収束する。
- 参考スコア(独自算出の注目度): 2.7286395031146062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks that simulate human achieves great successes. From
the perspective of simulating human memory method, we propose a stepped sampler
based on the "repeated input". We repeatedly inputted data to the LSTM model
stepwise in a batch. The stepped sampler is used to strengthen the ability of
fusing the temporal information in LSTM. We tested the stepped sampler on the
LSTM built-in in PyTorch. Compared with the traditional sampler of PyTorch,
such as sequential sampler, batch sampler, the training loss of the proposed
stepped sampler converges faster in the training of the model, and the training
loss after convergence is more stable. Meanwhile, it can maintain a higher test
accuracy. We quantified the algorithm of the stepped sampler.
- Abstract(参考訳): 人間をシミュレートする人工ニューラルネットワークは大きな成功を収める。
人間の記憶のシミュレーションの観点から「繰り返し入力」に基づく段階的なサンプリング手法を提案する。
我々はLSTMモデルにデータを段階的にバッチで繰り返し入力した。
ステップサンプリング器は、LSTM内の時間情報を融合する能力を強化するために使用される。
PyTorchのLSTMビルトインでステップサンプルをテストした。
逐次サンプリング器,バッチサンプリング器などの従来のPyTorchサンプル器と比較して,提案した段差サンプル器のトレーニング損失はモデルのトレーニングにおいてより早く収束し,収束後のトレーニング損失はより安定である。
一方、高いテスト精度を維持することができる。
ステップサンプリングのアルゴリズムを定量化した。
関連論文リスト
- One Step Diffusion via Shortcut Models [109.72495454280627]
単一ネットワークとトレーニングフェーズを用いて高品質なサンプルを生成する,生成モデルのファミリであるショートカットモデルを導入する。
ショートカットモデルは、現在のノイズレベルと所望のステップサイズにネットワークを条件付け、生成プロセスでモデルをスキップすることができる。
蒸留と比較して、ショートカットモデルは複雑性を1つのネットワークとトレーニングフェーズに減らし、推論時に様々なステップ予算を許容する。
論文 参考訳(メタデータ) (2024-10-16T13:34:40Z) - Efficient NeRF Optimization -- Not All Samples Remain Equally Hard [9.404889815088161]
ニューラルレイディアンスフィールド(NeRF)の効率的なトレーニングのためのオンラインハードサンプルマイニングの応用を提案する。
NeRFモデルは、多くの3D再構成およびレンダリングタスクに対して最先端の品質を生み出すが、かなりの計算資源を必要とする。
論文 参考訳(メタデータ) (2024-08-06T13:49:01Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
変換過程を高速化する適応運動量サンプリング法を提案する。
提案手法は,2倍から5倍の速度で,より忠実な画像/グラフを小さなサンプリングステップで作成できることを示す。
論文 参考訳(メタデータ) (2024-05-22T15:20:27Z) - Stable generative modeling using Schrödinger bridges [0.22499166814992438]
本稿では,Schr"odinger BridgesとLangevin dynamicsを組み合わせた生成モデルを提案する。
我々のフレームワークは自然に条件付きサンプルを生成し、ベイズ推論問題に拡張することができる。
論文 参考訳(メタデータ) (2024-01-09T06:15:45Z) - Boosting Diffusion Models with an Adaptive Momentum Sampler [21.88226514633627]
本稿では,広く使用されているAdamサンプルから着想を得た新しいDPM用リバースサンプルについて述べる。
提案手法は,事前学習した拡散モデルに容易に適用できる。
初期段階から更新方向を暗黙的に再利用することにより,提案するサンプルは,高レベルのセマンティクスと低レベルの詳細とのバランスを良くする。
論文 参考訳(メタデータ) (2023-08-23T06:22:02Z) - Entropy-based Training Methods for Scalable Neural Implicit Sampler [15.978655106034113]
非正規化対象分布からの効率的なサンプリングは、科学計算と機械学習の基本的な問題である。
本稿では,これらの制約を克服する,効率的でスケーラブルなニューラル暗黙サンプリング手法を提案する。
提案手法では, 提案手法を応用して, 提案手法を用いることにより, 精度の低い大量のサンプルを生成できる。
論文 参考訳(メタデータ) (2023-06-08T05:56:05Z) - Parallel Sampling of Diffusion Models [76.3124029406809]
拡散モデルは強力な生成モデルであるが、サンプリングが遅い。
そこで本研究では,複数のステップを並列にdenoisingすることで,事前学習した拡散モデルのサンプリングを高速化するParaDiGMSを提案する。
論文 参考訳(メタデータ) (2023-05-25T17:59:42Z) - Preconditioned Score-based Generative Models [49.88840603798831]
直感的な加速度法はサンプリングの繰り返しを減らし、しかしながら重大な性能劣化を引き起こす。
本稿では,行列プレコンディショニングを利用したモデル非依存型bfem事前条件拡散サンプリング(PDS)手法を提案する。
PDSは、バニラSGMのサンプリングプロセスを限界余剰計算コストで変更し、モデルの再訓練を行わない。
論文 参考訳(メタデータ) (2023-02-13T16:30:53Z) - ProDiff: Progressive Fast Diffusion Model For High-Quality
Text-to-Speech [63.780196620966905]
本稿では,高品質テキスト合成のためのプログレッシブ高速拡散モデルであるProDiffを提案する。
ProDiffはクリーンデータを直接予測することでデノナイジングモデルをパラメータ化し、サンプリングを高速化する際の品質劣化を回避する。
評価の結果,高忠実度メル-スペクトログラムの合成にProDiffは2回しか要しないことがわかった。
ProDiffは1つのNVIDIA 2080Ti GPU上で、サンプリング速度をリアルタイムより24倍高速にする。
論文 参考訳(メタデータ) (2022-07-13T17:45:43Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
本研究では,単体テストサンプルに適用可能な自己教師付きトレーニングアルゴリズムSwaVの新たな改良を提案する。
ベンチマークデータセットCIFAR10-Cにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T05:43:06Z) - Oops I Took A Gradient: Scalable Sampling for Discrete Distributions [53.3142984019796]
このアプローチは、多くの困難な設定において、ジェネリックサンプリングよりも優れていることを示す。
また,高次元離散データを用いた深部エネルギーモデルトレーニングのための改良型サンプリング器についても実演した。
論文 参考訳(メタデータ) (2021-02-08T20:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。