論文の概要: Stable generative modeling using Schrödinger bridges
- arxiv url: http://arxiv.org/abs/2401.04372v3
- Date: Wed, 23 Oct 2024 12:19:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:16.004105
- Title: Stable generative modeling using Schrödinger bridges
- Title(参考訳): シュレーディンガー橋を用いた安定な生成モデル
- Authors: Georg A. Gottwald, Fengyi Li, Youssef Marzouk, Sebastian Reich,
- Abstract要約: 本稿では,Schr"odinger BridgesとLangevin dynamicsを組み合わせた生成モデルを提案する。
我々のフレームワークは自然に条件付きサンプルを生成し、ベイズ推論問題に拡張することができる。
- 参考スコア(独自算出の注目度): 0.22499166814992438
- License:
- Abstract: We consider the problem of sampling from an unknown distribution for which only a sufficiently large number of training samples are available. Such settings have recently drawn considerable interest in the context of generative modelling and Bayesian inference. In this paper, we propose a generative model combining Schr\"odinger bridges and Langevin dynamics. Schr\"odinger bridges over an appropriate reversible reference process are used to approximate the conditional transition probability from the available training samples, which is then implemented in a discrete-time reversible Langevin sampler to generate new samples. By setting the kernel bandwidth in the reference process to match the time step size used in the unadjusted Langevin algorithm, our method effectively circumvents any stability issues typically associated with the time-stepping of stiff stochastic differential equations. Moreover, we introduce a novel split-step scheme, ensuring that the generated samples remain within the convex hull of the training samples. Our framework can be naturally extended to generate conditional samples and to Bayesian inference problems. We demonstrate the performance of our proposed scheme through experiments on synthetic datasets with increasing dimensions and on a stochastic subgrid-scale parametrization conditional sampling problem as well as generating sample trajectories of a dynamical system using conditional sampling.
- Abstract(参考訳): 十分な数のトレーニングサンプルしか入手できない未知の分布からサンプリングする問題を考察する。
このような設定は、最近、生成的モデリングとベイズ推論の文脈にかなりの関心を集めている。
本稿では,Schr\\odinger BridgesとLangevin dynamicsを組み合わせた生成モデルを提案する。
適切な可逆参照プロセス上のSchr\"odinger Bridgeを用いて、利用可能なトレーニングサンプルからの条件遷移確率を近似し、離散時間可逆的なLangevinサンプルに実装して新しいサンプルを生成する。
カーネルの帯域幅を、調整されていないランゲヴィンアルゴリズムで使用される時間ステップサイズに合わせるように基準プロセスに設定することにより、厳密な確率微分方程式のタイムステッピングに典型的な安定性問題を効果的に回避する。
さらに,本手法では, 得られたサンプルがトレーニングサンプルの凸部内にあることを保証し, 分割段階を新たに導入する。
我々のフレームワークは自然に条件付きサンプルを生成し、ベイズ推論問題に拡張することができる。
提案手法は,次元が増大する合成データセットや確率的サブグリッドスケールパラメトリゼーション条件付きサンプリング問題,および条件付きサンプリングを用いた動的システムの標本軌跡の生成などにより,提案手法の性能を実証する。
関連論文リスト
- Generative Modeling with Bayesian Sample Inference [50.07758840675341]
我々はガウス的後代推論の単純な作用から新しい生成モデルを導出する。
生成したサンプルを未知変数として推論することで、ベイズ確率の言語でサンプリングプロセスを定式化する。
我々のモデルは、未知のサンプルを広い初期信念から絞り込むために、一連の予測と後続の更新ステップを使用する。
論文 参考訳(メタデータ) (2025-02-11T14:27:10Z) - Distributional Diffusion Models with Scoring Rules [83.38210785728994]
拡散モデルは高品質な合成データを生成する。
高品質な出力を生成するには、多くの離散化ステップが必要です。
クリーンデータサンプルの後部エム分布を学習し,サンプル生成を実現することを提案する。
論文 参考訳(メタデータ) (2025-02-04T16:59:03Z) - Localized Schrödinger Bridge Sampler [0.276240219662896]
Schr"odinger ブリッジと Plug & play Langevin サンプルを併用した以前の作業の上に構築します。
これらのアプローチの重要なボトルネックは、必要なトレーニングサンプルの指数的依存である。
条件付き期待値の条件付き独立性を利用した局所化戦略を提案する。
論文 参考訳(メタデータ) (2024-09-12T12:02:51Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
変換過程を高速化する適応運動量サンプリング法を提案する。
提案手法は,2倍から5倍の速度で,より忠実な画像/グラフを小さなサンプリングステップで作成できることを示す。
論文 参考訳(メタデータ) (2024-05-22T15:20:27Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Generative modeling for time series via Schr{\"o}dinger bridge [0.0]
本稿では,SB (Schr'dinger Bridge) に基づく時系列生成モデルを提案する。
これは、経路空間上の基準確率測度と、時系列の合同データ分布と整合した目標測度との間の最適輸送によるエントロピックから構成される。
論文 参考訳(メタデータ) (2023-04-11T09:45:06Z) - Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic
Analysis For DDIM-Type Samplers [90.45898746733397]
本研究では拡散生成モデルに用いる決定論的サンプリング器の非漸近解析のためのフレームワークを開発する。
確率フローODEに沿った1ステップは,1) 条件付き対数線上を無限に先行して上昇する回復ステップ,2) 雑音を現在の勾配に向けて前向きに進行する劣化ステップの2段階で表すことができる。
論文 参考訳(メタデータ) (2023-03-06T18:59:19Z) - Example-Based Sampling with Diffusion Models [7.943023838493658]
画像生成のための拡散モデルは、例から点集合を生成する方法を学ぶのに適している。
拡散モデルを用いて既存のサンプルを模した2次元点集合を観測点集合から生成する方法を提案する。
我々は、我々のアプローチの微分可能性を用いて、特性を強制する点集合を最適化する方法を実証する。
論文 参考訳(メタデータ) (2023-02-10T08:35:17Z) - Conditioning Normalizing Flows for Rare Event Sampling [61.005334495264194]
本稿では,ニューラルネットワーク生成構成に基づく遷移経路サンプリング手法を提案する。
本手法は遷移領域の熱力学と運動学の両方の解法を可能にすることを示す。
論文 参考訳(メタデータ) (2022-07-29T07:56:10Z) - Selectively increasing the diversity of GAN-generated samples [8.980453507536017]
本稿では,GAN生成サンプルの多様性を選択的に向上する手法を提案する。
本研究では,CERN における ALICE 実験のZero Degree Calorimeter から得られたデータをシミュレーションする実生活シナリオとともに,本手法の優位性を示す。
論文 参考訳(メタデータ) (2022-07-04T16:27:06Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。