Statistical correlation between quantum entanglement and spin-orbit
coupling in crossed beam molecular dynamics
- URL: http://arxiv.org/abs/2107.08483v1
- Date: Sun, 18 Jul 2021 16:19:18 GMT
- Title: Statistical correlation between quantum entanglement and spin-orbit
coupling in crossed beam molecular dynamics
- Authors: Junxu Li, Manas Sajjan, Sumit Suresh Kale, and Sabre Kais
- Abstract summary: We propose an experimental scheme under the crossed beam molecular dynamical setup, with the F+HD reaction.
We numerically simulate the attainable results highlighting specific patterns corresponding to various possibilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-classical features like interference is already being harnessed to
control the output of chemical reactions. However quantum entanglement which is
an equally enigmatic many-body quantum correlation can also be used as a
powerful resource yet have eluded explicit attention. In this report, we
propose an experimental scheme under the crossed beam molecular dynamical
setup, with the F+HD reaction, aiming to study the possible influence of
entanglement within reactant pairs on the angular features of the product
distribution. The aforesaid reaction has garnered interest recently as an
unusual horseshoe shape pattern in the product (HF) distribution was observed,
which has been attributed to the coupling of spin and orbital degrees of
freedom. We propose an experimental scheme aiming to study the possible
influence of entanglement on the necessity for the inclusion of such spin-orbit
characteristics, under circumstances wherein the existence of entanglement and
spin-orbit interaction is simultaneously detectable. We further numerically
simulate the attainable results highlighting specific patterns corresponding to
various possibilities. Such studies if extended can provide unforeseen
mechanistic insight in analogous reactions too from the lens of quantum
information.
Related papers
- Transient concurrence for copropagating entangled bosons and fermions [0.0]
We investigate how entanglement affects the evolution of the particles using a modified version of the shutter quantum model.
We derive a transient concurrence to momentum-space entanglement, and show that modulates the interference correlation of the joint probability density.
We derive analytical expressions that reveal a direct connection between entanglement and the characteristic oscillations of the Hanbury-Brown and Twiss effect.
arXiv Detail & Related papers (2024-10-15T22:42:29Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Pair localization in dipolar systems with tunable positional disorder [0.0]
We study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin couplings.
We show that this system exhibits a localization crossover and identify strongly interacting pairs as emergent local conserved quantities.
arXiv Detail & Related papers (2022-07-29T04:31:47Z) - Exceptional dynamics of interacting spin liquids [3.127528121347748]
We show that interactions in quantum spin liquids can result in non-Hermitian phenomenology.
We show the generic appearance of exceptional points and rings depending on the symmetry of the system.
arXiv Detail & Related papers (2022-02-07T19:00:02Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Orientational quantum revivals induced by a single-cycle terahertz pulse [2.4298571485464913]
We present a combined analytical and numerical study on the generation of orientational quantum revivals (OQRs) using a single-cycle THz pulse.
As a proof of principle, we examine the scheme in the linear polar molecule HCN with experimentally accessible pulse parameters.
To visualize the involved quantum mechanism, we derive a three-state spectroscopic model using the Magnus expansion of the time-evolution operator.
arXiv Detail & Related papers (2020-09-26T05:14:50Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.