論文の概要: MARC: Mining Association Rules from datasets by using Clustering models
- arxiv url: http://arxiv.org/abs/2107.08814v1
- Date: Wed, 14 Jul 2021 06:28:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-25 12:13:58.572782
- Title: MARC: Mining Association Rules from datasets by using Clustering models
- Title(参考訳): MARC:クラスタリングモデルを用いたデータセットからのマイニングアソシエーションルール
- Authors: Shadi Al Shehabi and Abdullatif Baba
- Abstract要約: 関連ルールは、大きなデータセット内の異なる項目間で、主に隠れている関係を見つけるのに有用である。
シンボリックモデルは、関連ルールを抽出する主要なツールである。
我々はMARCと呼ばれる新しい手法を提案し、I型とII型という2つの重要な階層のより重要な関連ルールを抽出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Association rules are useful to discover relationships, which are mostly
hidden, between the different items in large datasets. Symbolic models are the
principal tools to extract association rules. This basic technique is
time-consuming, and it generates a big number of associated rules. To overcome
this drawback, we suggest a new method, called MARC, to extract the more
important association rules of two important levels: Type I, and Type II. This
approach relies on a multi-topographic unsupervised neural network model as
well as clustering quality measures that evaluate the success of a given
numerical classification model to behave as a natural symbolic model.
- Abstract(参考訳): 関連ルールは、大きなデータセット内のさまざまな項目の間に隠れている関係を見つけるのに役立ちます。
シンボリックモデルは関連ルールを抽出する主要なツールである。
この基本的なテクニックは時間がかかり、多数の関連するルールを生成する。
この欠点を克服するため、我々はMARCと呼ばれる新しい手法を提案し、I型とII型という2つの重要な階層のより重要な関連ルールを抽出する。
このアプローチは、多面的非教師なしニューラルネットワークモデルと、与えられた数値分類モデルの成功を自然な象徴モデルとして評価するクラスタリング品質尺度に依存する。
関連論文リスト
- Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
本稿では,全体論的な大規模言語モデルスケーリングガイドラインであるModel-GLUEを紹介する。
我々の研究は、既存のLCMスケーリングテクニック、特に選択的マージと混合のバリエーションのベンチマークから始まります。
我々の手法は、マージ可能なモデルのクラスタリングと最適なマージ戦略選択、モデルミックスによるクラスタの統合を含む。
論文 参考訳(メタデータ) (2024-10-07T15:55:55Z) - VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition [3.4923338594757674]
大型言語モデル(LLM)は、様々な種類のエンティティを抽出できるモデルを訓練するために使用することができる。
本稿では,オープンソースのLLM LLaMA2をバックボーンモデルとして利用し,異なるタイプのエンティティとデータセットを区別するための具体的な命令を設計する。
我々のモデルVANERは、パラメータの小さな分割で訓練され、従来のLLMモデルよりも大幅に優れており、LLMをベースとしたモデルとして初めて、従来の最先端のBioNERシステムの大部分を上回りました。
論文 参考訳(メタデータ) (2024-04-27T09:00:39Z) - A parallelizable model-based approach for marginal and multivariate
clustering [0.0]
本稿では,モデルに基づくクラスタリングの頑健さを生かしたクラスタリング手法を提案する。
我々は、各マージンごとに異なる数のクラスタを持つことができる有限混合モデルを指定することで、この問題に対処する。
提案手法は、完全な(結合した)モデルベースのクラスタリング手法よりも、中程度から高次元の処理に適するだけでなく、計算的にも魅力的である。
論文 参考訳(メタデータ) (2022-12-07T23:54:41Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - It Takes Two Flints to Make a Fire: Multitask Learning of Neural
Relation and Explanation Classifiers [40.666590079580544]
一般化と説明可能性の間の緊張を緩和する関係抽出のための説明可能なアプローチを提案する。
提案手法では,関係抽出のための分類器を共同で訓練するマルチタスク学習アーキテクチャを用いる。
このアプローチにグローバルな説明をもたらすために、モデル出力をルールに変換する。
論文 参考訳(メタデータ) (2022-04-25T03:53:12Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
スケルトンに基づく行動認識には,単純なマルチスケールセマンティクス誘導ニューラルネットワークが提案されている。
MS-SGNは、NTU60、NTU120、SYSUデータセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-11-07T03:50:50Z) - Multi-Scale Label Relation Learning for Multi-Label Classification Using
1-Dimensional Convolutional Neural Networks [0.5801044612920815]
MSDN(Multi-Scale Label Dependence Relation Networks)を提案する。
MSDNは1次元の畳み込みカーネルを使用してラベルの依存関係をマルチスケールで学習する。
我々は,RNNベースのMLCモデルと比較して,モデルパラメータの少ないモデルで精度を向上できることを実証した。
論文 参考訳(メタデータ) (2021-07-13T09:26:34Z) - Rewriting a Deep Generative Model [56.91974064348137]
我々は,深層生成モデルによって符号化された特定の規則の操作という,新たな問題設定を導入する。
本稿では,ディープネットワークの層を線形連想メモリとして操作することで,所望のルールを変更する定式化を提案する。
本稿では,生成モデルのルールを対話的に変更し,望ましい効果を得られるユーザインタフェースを提案する。
論文 参考訳(メタデータ) (2020-07-30T17:58:16Z) - Commonality-Parsing Network across Shape and Appearance for Partially
Supervised Instance Segmentation [71.59275788106622]
そこで本稿では,マスク付分類から新しい分類へ一般化可能な,クラス非依存の共通性について考察する。
本モデルでは,COCOデータセット上のサンプルセグメンテーションにおける部分教師付き設定と少数ショット設定の両方において,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-24T07:23:44Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z) - Generation of Consistent Sets of Multi-Label Classification Rules with a
Multi-Objective Evolutionary Algorithm [11.25469393912791]
本稿では,複数のルールに基づく多ラベル分類モデルを生成する多目的進化アルゴリズムを提案する。
我々のアルゴリズムは規則の集合(順序のない集合)に基づいてモデルを生成し、解釈可能性を高める。
また、ルール作成中にコンフリクト回避アルゴリズムを用いることで、与えられたモデル内のすべてのルールは、同じモデル内の他のすべてのルールと整合することが保証される。
論文 参考訳(メタデータ) (2020-03-27T16:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。