論文の概要: Model-free prediction of emergence of extreme events in a parametrically
driven nonlinear dynamical system by Deep Learning
- arxiv url: http://arxiv.org/abs/2107.08819v1
- Date: Wed, 14 Jul 2021 14:48:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-25 11:58:18.196625
- Title: Model-free prediction of emergence of extreme events in a parametrically
driven nonlinear dynamical system by Deep Learning
- Title(参考訳): 深層学習によるパラメトリック駆動非線形力学系における極限事象発生のモデルフリー予測
- Authors: J.Meiyazhagan, S. Sudharsan, and M. Senthilvelan
- Abstract要約: パラメトリック駆動非線形力学系における極端な事象の発生を予測する。
我々は3つのディープラーニングモデル、すなわちMulti-Layer Perceptron、Convolutional Neural Network、Long Short-Term Memoryを使用する。
長短期記憶モデルがカオス時系列の予測に最適であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We predict the emergence of extreme events in a parametrically driven
nonlinear dynamical system using three Deep Learning models, namely Multi-Layer
Perceptron, Convolutional Neural Network and Long Short-Term Memory. The Deep
Learning models are trained using the training set and are allowed to predict
the test set data. After prediction, the time series of the actual and the
predicted values are plotted one over the other in order to visualize the
performance of the models. Upon evaluating the Root Mean Square Error value
between predicted and the actual values of all three models, we find that the
Long Short-Term Memory model can serve as the best model to forecast the
chaotic time series and to predict the emergence of extreme events for the
considered system.
- Abstract(参考訳): パラメトリック駆動非線形力学系における極端な事象の発生を,多層パーセプトロン,畳み込みニューラルネットワーク,長期記憶という3つのディープラーニングモデルを用いて予測する。
Deep Learningモデルはトレーニングセットを使用してトレーニングされ、テストセットデータを予測することができる。
予測後、モデルの性能を可視化するために、実値と予測値の時系列を相互にプロットする。
予測と実際の3つのモデル間の根平均二乗誤差値を評価した結果、長期短期記憶モデルはカオス時系列を予測し、考慮されたシステムに対する極端な事象の発生を予測するのに最適なモデルとなることが判明した。
関連論文リスト
- Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - On Optimal Early Stopping: Over-informative versus Under-informative
Parametrization [13.159777131162961]
我々は,最適早期停止時間とモデル次元の関係を明らかにするために理論的結果を開発する。
実験により、最適な早期停止時間に関する理論的結果は、ディープニューラルネットワークのトレーニングプロセスと一致することを示した。
論文 参考訳(メタデータ) (2022-02-20T18:20:06Z) - Model-assisted deep learning of rare extreme events from partial
observations [0.0]
ディープニューラルネットワークを使って稀な極端な事象を予測するには、いわゆる小さなデータ問題に遭遇する。
本稿では,数値シミュレーションからトレーニングデータを取得するモデル支援フレームワークについて検討する。
長い短期記憶ネットワークはノイズに対して最も頑丈であり、比較的正確な予測が得られる。
論文 参考訳(メタデータ) (2021-11-04T23:24:22Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
本稿では,時間-時間予測タスクのためのDeep Kernel Accelerated Failure Timeモデルを提案する。
我々のモデルは、2つの実世界のデータセットの実験において、繰り返しニューラルネットワークに基づくベースラインよりも良い点推定性能を示す。
論文 参考訳(メタデータ) (2021-07-26T14:55:02Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
より長い地平線で安定的に予測するために, 状態作用データに対する教師付き学習のための新しいパラメータ化を提案する。
シミュレーションおよび実験によるロボット作業の結果,軌道に基づくモデルにより,より正確な長期予測が得られた。
論文 参考訳(メタデータ) (2020-12-16T18:47:37Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。