Frequency-Supervised MR-to-CT Image Synthesis
- URL: http://arxiv.org/abs/2107.08962v1
- Date: Mon, 19 Jul 2021 15:18:36 GMT
- Title: Frequency-Supervised MR-to-CT Image Synthesis
- Authors: Zenglin Shi, Pascal Mettes, Guoyan Zheng, and Cees Snoek
- Abstract summary: This paper strives to generate a synthetic computed tomography (CT) image from a magnetic resonance (MR) image.
We find that all existing approaches share a common limitation: reconstruction breaks down in and around the high-frequency parts of CT images.
We introduce frequency-supervised deep networks to explicitly enhance high-frequency MR-to-CT image reconstruction.
- Score: 23.47506325756089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper strives to generate a synthetic computed tomography (CT) image
from a magnetic resonance (MR) image. The synthetic CT image is valuable for
radiotherapy planning when only an MR image is available. Recent approaches
have made large strides in solving this challenging synthesis problem with
convolutional neural networks that learn a mapping from MR inputs to CT
outputs. In this paper, we find that all existing approaches share a common
limitation: reconstruction breaks down in and around the high-frequency parts
of CT images. To address this common limitation, we introduce
frequency-supervised deep networks to explicitly enhance high-frequency
MR-to-CT image reconstruction. We propose a frequency decomposition layer that
learns to decompose predicted CT outputs into low- and high-frequency
components, and we introduce a refinement module to improve high-frequency
reconstruction through high-frequency adversarial learning. Experimental
results on a new dataset with 45 pairs of 3D MR-CT brain images show the
effectiveness and potential of the proposed approach. Code is available at
\url{https://github.com/shizenglin/Frequency-Supervised-MR-to-CT-Image-Synthesis}.
Related papers
- Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
We propose an approach for enhanced monomodal registration using synthetic MRI images from CT scans.
Our methodology shows promising results, outperforming several state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T16:39:56Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
We investigate the use of a convolutional recurrent neural network (CRNN) architecture to exploit temporal correlations in cardiac MRI reconstruction.
This is combined with a single-image super-resolution refinement module to improve single coil reconstruction by 4.4% in structural similarity and 3.9% in normalised mean square error.
The proposed model demonstrates considerable enhancements compared to the baseline case and holds promising potential for further improving cardiac MRI reconstruction.
arXiv Detail & Related papers (2023-09-23T14:07:04Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Synthetic CT Generation from MRI using 3D Transformer-based Denoising
Diffusion Model [2.232713445482175]
Magnetic resonance imaging (MRI)-based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning.
We propose an MRI-to-CT transformer-based denoising diffusion probabilistic model (MC-DDPM) to transform MRI into high-quality sCT.
arXiv Detail & Related papers (2023-05-31T00:32:00Z) - Meta-Learning Enabled Score-Based Generative Model for 1.5T-Like Image
Reconstruction from 0.5T MRI [22.024215676838185]
We introduce a novel meta-learning approach that employs a teacher-student mechanism.
An optimal-transport-driven teacher learns the degradation process from high-field to low-field MR images.
Then, a score-based student solves the inverse problem of reconstructing a high-field-like MR image from a low-field MRI.
arXiv Detail & Related papers (2023-05-04T02:40:42Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
Low radiation dose may result in increased noise and artifacts, which greatly affected the clinical diagnosis.
To obtain high-quality Total-body Low-dose CT (LDCT) images, previous deep-learning-based research work has introduced various network architectures.
In this paper, we propose a novel intra-task knowledge transfer method that leverages the distilled knowledge from NDCT images.
arXiv Detail & Related papers (2021-12-01T06:46:38Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.