論文の概要: Follow Your Path: a Progressive Method for Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2107.09305v1
- Date: Tue, 20 Jul 2021 07:44:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-21 21:12:58.382246
- Title: Follow Your Path: a Progressive Method for Knowledge Distillation
- Title(参考訳): あなたの道をたどる:知識蒸留の進歩的方法
- Authors: Wenxian Shi, Yuxuan Song, Hao Zhou, Bohan Li, Lei Li
- Abstract要約: 本稿では,教師モデルの指導信号を学生のパラメータ空間に投影することで,新しいモデルに依存しないProKTを提案する。
画像とテキストの双方で実験した結果,提案したProKTは既存の知識蒸留法と比較して常に優れた性能を発揮することがわかった。
- 参考スコア(独自算出の注目度): 23.709919521355936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks often have a huge number of parameters, which posts
challenges in deployment in application scenarios with limited memory and
computation capacity. Knowledge distillation is one approach to derive compact
models from bigger ones. However, it has been observed that a converged heavy
teacher model is strongly constrained for learning a compact student network
and could make the optimization subject to poor local optima. In this paper, we
propose ProKT, a new model-agnostic method by projecting the supervision
signals of a teacher model into the student's parameter space. Such projection
is implemented by decomposing the training objective into local intermediate
targets with an approximate mirror descent technique. The proposed method could
be less sensitive with the quirks during optimization which could result in a
better local optimum. Experiments on both image and text datasets show that our
proposed ProKT consistently achieves superior performance compared to other
existing knowledge distillation methods.
- Abstract(参考訳): ディープニューラルネットワークは、しばしば膨大な数のパラメータを持ち、メモリと計算能力に制限のあるアプリケーションシナリオのデプロイにおける課題を投稿する。
知識蒸留は、より大きいモデルからコンパクトモデルを引き出すためのアプローチである。
しかし、収束重大教師モデルは、コンパクトな学生ネットワークの学習に強く制約されており、その最適化をローカルな最適性に乏しくすることができることが観察されている。
本稿では,教師モデルの指導信号を学生のパラメータ空間に投影し,モデルに依存しない新しい手法であるProKTを提案する。
このようなプロジェクションは、トレーニング対象を近似ミラー降下法で局所的な中間目標に分解することで実現される。
提案手法は最適化時のクォークに対する感度が低くなり,局所最適性が向上する可能性がある。
画像とテキストの双方で実験した結果,提案したProKTは既存の知識蒸留法と比較して常に優れた性能を発揮することがわかった。
関連論文リスト
- Edge-Efficient Deep Learning Models for Automatic Modulation Classification: A Performance Analysis [0.7428236410246183]
無線信号の自動変調分類(AMC)のための最適化畳み込みニューラルネットワーク(CNN)について検討した。
本稿では,これらの手法を組み合わせて最適化モデルを提案する。
実験結果から,提案手法と組み合わせ最適化手法は,複雑度が著しく低いモデルの開発に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-04-11T06:08:23Z) - Selective Mixup Fine-Tuning for Optimizing Non-Decomposable Objectives [17.10165955576643]
現在の最先端の実証技術は、実用的で非分解不能な性能目標に対して、準最適性能を提供する。
本稿では,SelMixを提案する。SelMixは,事前学習モデルに対して,選択型ミキサアップに基づく安価な微調整技術である。
提案したSelMixファインタニングにより,ベンチマーク間での様々な非分解性目標の性能が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-03-27T06:55:23Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
大規模なニューラルモデル(トランスフォーマーなど)は、情報検索(IR)のための最先端のパフォーマンスを達成する
本研究では,大規模教師モデルで学習したクエリとドキュメント間の相対的幾何を利用した新しい蒸留手法を提案する。
提案手法は, 両エンコーダ (DE) とクロスエンコーダ (CE) の2種類の教師モデルから, 95~97%の教師性能を維持できる1/10の非対称な学生への蒸留に成功した。
論文 参考訳(メタデータ) (2023-01-27T22:04:37Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Rethinking Pareto Frontier for Performance Evaluation of Deep Neural
Networks [2.167843405313757]
多目的最適化を用いて効率測定を再定義する。
競合変数と自然を同時に1つの相対効率尺度で組み合わせる。
これにより、異なるコンピューティングハードウェア上で効率的に動作するディープモデルをランク付けし、推論効率とトレーニング効率を客観的に組み合わせることができる。
論文 参考訳(メタデータ) (2022-02-18T15:58:17Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - Scene-adaptive Knowledge Distillation for Sequential Recommendation via
Differentiable Architecture Search [19.798931417466456]
シーケンシャル・レコメンデータ・システム(SRS)は、ユーザの動的興味やシーケンシャルな行動パターンをモデル化する能力から、研究ホットスポットとなっている。
モデル表現能力を最大化するために、デフォルトの選択は、より大きく深いネットワークアーキテクチャを適用することである。
本稿では,教師モデルの知識を学生モデルに適応的に圧縮するフレームワークであるAdaRecを提案する。
論文 参考訳(メタデータ) (2021-07-15T07:47:46Z) - Boosting Light-Weight Depth Estimation Via Knowledge Distillation [21.93879961636064]
本稿では,最小限の計算資源を用いて深度マップを正確に推定できる軽量ネットワークを提案する。
モデル複雑性を最大に低減するコンパクトなモデルアーキテクチャを設計することで、これを実現する。
本手法は, パラメータの1%しか使用せず, 最先端手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-05-13T08:42:42Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。