論文の概要: Challenges in cybersecurity: Lessons from biological defense systems
- arxiv url: http://arxiv.org/abs/2107.10344v1
- Date: Wed, 21 Jul 2021 20:18:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 07:30:48.515072
- Title: Challenges in cybersecurity: Lessons from biological defense systems
- Title(参考訳): サイバーセキュリティの課題:生物防御システムからの教訓
- Authors: Edward Schrom, Ann Kinzig, Stephanie Forrest, Andrea L. Graham, Simon
A. Levin, Carl T. Bergstrom, Carlos Castillo-Chavez, James P. Collins, Rob J.
de Boer, Adam Doup\'e, Roya Ensafi, Stuart Feldman, Bryan T. Grenfell. Alex
Halderman, Silvie Huijben, Carlo Maley, Melanie Mosesr, Alan S. Perelson,
Charles Perrings, Joshua Plotkin, Jennifer Rexford, Mohit Tiwari
- Abstract要約: セキュリティ上の課題は、幅広い複雑な適応システムの保守に不可欠である。
自然防衛の進化の研究から学んだ教訓は、そのようなシステムの保護のためのガイダンスを提供することができる。
- 参考スコア(独自算出の注目度): 5.992870171346109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the commonalities between methods for assuring the security of
computer systems (cybersecurity) and the mechanisms that have evolved through
natural selection to protect vertebrates against pathogens, and how insights
derived from studying the evolution of natural defenses can inform the design
of more effective cybersecurity systems. More generally, security challenges
are crucial for the maintenance of a wide range of complex adaptive systems,
including financial systems, and again lessons learned from the study of the
evolution of natural defenses can provide guidance for the protection of such
systems.
- Abstract(参考訳): コンピュータシステム(サイバーセキュリティ)のセキュリティを確保する方法と、脊椎動物を病原体から守るための自然選択を通じて進化してきたメカニズムの共通点と、自然防衛の進化の研究から得られた洞察が、より効果的なサイバーセキュリティシステムの設計にどのように役立つかを検討する。
より一般的には、金融システムを含む幅広い複雑な適応システムを維持するためには、セキュリティ上の課題が不可欠であり、また、自然防衛の進化の研究から学んだ教訓は、そのようなシステムを保護するためのガイダンスを提供することができる。
関連論文リスト
- SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - Confronting the Reproducibility Crisis: A Case Study of Challenges in Cybersecurity AI [0.0]
AIベースのサイバーセキュリティの重要な領域は、悪意のある摂動からディープニューラルネットワークを守ることに焦点を当てている。
VeriGauge ツールキットを用いて,認証されたロバスト性に関する先行研究の結果の検証を試みる。
私たちの発見は、標準化された方法論、コンテナ化、包括的なドキュメントの緊急性の必要性を浮き彫りにしています。
論文 参考訳(メタデータ) (2024-05-29T04:37:19Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
人間のコントロールから独立すると、このようなシステムのサイバーセキュリティはさらに重要になる。
人間のコントロールから独立すると、このようなシステムのサイバーセキュリティはさらに重要になる。
本稿では,技術の現状を徹底的に議論し,新たなセキュリティ課題を特定し,研究の方向性を提案する。
論文 参考訳(メタデータ) (2023-11-05T09:17:39Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Sustainable Adaptive Security [11.574868434725117]
本稿では,新たに発見された脅威を軽減し,適応型セキュリティシステムの拡張による永続的保護を反映したサステナブル・アダプティブ・セキュリティ(SAS)の概念を提案する。
私たちはスマートホームの例を使って、持続可能な適応セキュリティを満たすシステムのMAPE(Monitor, Analysis, Planning, Execution)ループのアクティビティをどのように構築できるかを示します。
論文 参考訳(メタデータ) (2023-06-05T08:48:36Z) - A Research Ecosystem for Secure Computing [4.212354651854757]
コンピュータ、システム、アプリケーションのセキュリティは、コンピュータ科学における何十年にもわたって活発な研究領域であった。
課題は、情報エコシステムのセキュリティと信頼から、敵の人工知能や機械学習までさまざまだ。
新しいインセンティブと教育がこの変化の核心にある。
論文 参考訳(メタデータ) (2021-01-04T22:42:28Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Trustworthy AI Inference Systems: An Industry Research View [58.000323504158054]
我々は、信頼できるAI推論システムの設計、展開、運用にアプローチするための業界調査ビューを提供する。
信頼された実行環境を用いたAIシステムの機会と課題を強調します。
我々は,産業,アカデミック,政府研究者のグローバルな集団的注意を必要とする,さらなる発展の分野を概説する。
論文 参考訳(メタデータ) (2020-08-10T23:05:55Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。