Proposal for measuring Newtonian constant of gravitation at an
exceptional point in an optomechanical system
- URL: http://arxiv.org/abs/2107.11559v1
- Date: Sat, 24 Jul 2021 08:49:17 GMT
- Title: Proposal for measuring Newtonian constant of gravitation at an
exceptional point in an optomechanical system
- Authors: Lei Chen, Jian Liu, and Ka-di Zhu
- Abstract summary: We develop a quantum mechanical method of measuring the Newtonian constant of gravitation, G.
An optomechanical system consisting of two cavities and two membrane resonators is used.
- Score: 7.973708885357668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a quantum mechanical method of measuring the Newtonian constant of
gravitation, G. In this method, an optomechanical system consisting of two
cavities and two membrane resonators is used. The added source mass would
induce the shifts of the eigenfrequencies of the supermodes. Via detecting the
shifts, we can perform our measurement of G. Furthermore, our system can
features exceptional point (EP) which are branch point singularities of the
spectrum and eigenfunctions. In the paper, we demonstrate that operating the
system at EP can enhance our measurement of G. In addition, we derive the
relationship between EP enlarged eigenfrequency shift and the Newtonian
constant. This work provides a way to engineer EP-assisted optomechanical
devices for applications in the field of precision measurement of G
Related papers
- True and apparent motion of gravitational-wave detector test masses [0.0]
Modern optomechanical systems employ increasingly sophisticated quantum-mechanical states of light to probe and manipulate mechanical motion.
We provide an accurate accounting of the true test mass motion, incorporating all sources of loss, the effect of feedback control, and the influence of classical force and sensing noises.
We apply this formalism to current and possible future gravitational-wave interferometers, LIGO A+, LIGO Voyager, Cosmic Explorer (CE), and CE Voyager.
arXiv Detail & Related papers (2024-08-26T15:13:25Z) - Feasible generation of gravity-induced entanglement by using optomechanical systems [0.0]
We report the feasibility of detecting gravity-induced entanglement (GIE) with optomechanical systems.
Our proposal focuses on GIE generation between optomechanical mirrors, coupled via gravitational interactions.
We show that GIE is generated faster than a well-known time scale without optomechanical coupling.
arXiv Detail & Related papers (2024-05-28T12:47:16Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Finite resolution ancilla-assisted measurements of quantum work
distributions [77.34726150561087]
We consider an ancilla-assisted protocol measuring the work done on a quantum system driven by a time-dependent Hamiltonian.
We consider system Hamiltonians which both commute and do not commute at different times, finding corrections to fluctuation relations like the Jarzynski equality and the Crooks relation.
arXiv Detail & Related papers (2021-11-30T15:08:25Z) - Constraining modified gravity with quantum optomechanics [0.0]
We derive the best possible bounds that can be placed on Yukawa- and chameleon-like modifications to the Newtonian gravitational potential with a cavity optomechanical quantum sensor.
Our results show that optomechanical systems in high vacuum could, in principle, further constrain the parameters of chameleon-like modifications to Newtonian gravity.
arXiv Detail & Related papers (2021-08-02T09:32:23Z) - Proposal for constraining non-Newtonian gravity at nm range via
criticality enhanced measurement of resonance frequency shift [7.973708885357668]
We set a constraint on the non-Newtonian gravity which improves the previous bounds by about a factor of 7 at 1 nanometer range.
Our results indicate that our method could be put into consideration in relevant experimental searches.
arXiv Detail & Related papers (2021-07-25T13:54:05Z) - Optimal estimation of time-dependent gravitational fields with quantum
optomechanical systems [0.0]
We study the fundamental sensitivity that can be achieved with an ideal optomechanical system in the nonlinear regime.
We specifically apply our results to the measurement of gravitational fields from small oscillating masses.
arXiv Detail & Related papers (2020-08-14T18:00:01Z) - Proposal for an optical interferometric measurement of the gravitational
red-shift with satellite systems [52.77024349608834]
Einstein Equivalence Principle (EEP) underpins all metric theories of gravity.
The iconic gravitational red-shift experiment places two fermionic systems, used as clocks, in different gravitational potentials.
A fundamental point in the implementation of a satellite large-distance optical interferometric experiment is the suppression of the first-order Doppler effect.
We propose a novel scheme to suppress it, by subtracting the phase-shifts measured in the one-way and in the two-way configuration between a ground station and a satellite.
arXiv Detail & Related papers (2018-11-12T16:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.