論文の概要: Collaborative Problem Solving on a Data Platform Kaggle
- arxiv url: http://arxiv.org/abs/2107.11929v1
- Date: Mon, 26 Jul 2021 02:28:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 21:44:07.535854
- Title: Collaborative Problem Solving on a Data Platform Kaggle
- Title(参考訳): データプラットフォームkaggleにおける協調問題解決
- Authors: Teruaki Hayashi, Takumi Shimizu, Yoshiaki Fukami
- Abstract要約: データ交換エコシステムは、データと知識の交換を容易にするプラットフォームサービスによって開発されている。
本研究では,データ分析競合プラットフォームであるKaggleについて検討する。
- 参考スコア(独自算出の注目度): 0.4511923587827301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data exchange across different domains has gained much attention as a way of
creating new businesses and improving the value of existing services. Data
exchange ecosystem is developed by platform services that facilitate data and
knowledge exchange and offer co-creation environments for organizations to
promote their problem-solving. In this study, we investigate Kaggle, a data
analysis competition platform, and discuss the characteristics of data and the
ecosystem that contributes to collaborative problem-solving by analyzing the
datasets, users, and their relationships.
- Abstract(参考訳): 異なるドメイン間でのデータ交換は、新しいビジネスを作り、既存のサービスの価値を高める方法として多くの注目を集めている。
データ交換エコシステムは、データと知識の交換を促進するプラットフォームサービスによって開発され、組織が問題解決を促進するための共創環境を提供する。
本研究では,データ分析コンペティションプラットフォームであるkaggleを調査し,データセット,ユーザ,およびそれらの関係を分析することにより,協調的問題解決に寄与するデータとエコシステムの特徴について考察する。
関連論文リスト
- Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
我々は,意図に基づくクライアント選択機構を備えた新しいPFLアルゴリズムであるFedACSを提案する。
FedACSは、類似したデータ分散を持つクライアント間のコラボレーションを強化するためのアテンションメカニズムを統合している。
CIFAR10とFMNISTの実験は、FedACSの優位性を検証する。
論文 参考訳(メタデータ) (2023-12-23T03:31:46Z) - Collaborative business intelligence virtual assistant [1.9953434933575993]
本研究では、ユーザとCBI仮想アシスタントのインタラクションを通じて、分散仮想チームにおけるデータマイニングの応用に焦点を当てる。
CBIのための仮想アシスタントは、より広い範囲のユーザのためのデータ探索アクセシビリティを強化し、データ分析に必要な時間と労力を合理化するためのものである。
論文 参考訳(メタデータ) (2023-12-20T05:34:12Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
まず、現在のデータマーケットプレースを調査し、データセットに関する詳細な情報を提供するプラットフォームが不足していることを明らかにする。
次に、データプロバイダと取得者間のインタラクションをモデル化するベンチマークであるDAMチャレンジを紹介します。
提案手法の評価は,機械学習における効果的なデータ取得戦略の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-22T22:15:17Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - Towards Avoiding the Data Mess: Industry Insights from Data Mesh Implementations [1.5029560229270191]
Data Meshは、企業データ管理のための、社会技術的、分散化されたコンセプトである。
業界の専門家との15の半構造化インタビューを行います。
本研究は,業界の専門家による知見を総合し,データメッシュの採用を成功させるための予備的ガイドラインを研究者や専門家に提供する。
論文 参考訳(メタデータ) (2023-02-03T13:09:57Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - A Proactive Management Scheme for Data Synopses at the Edge [20.711789781518753]
Edge Computingエコシステムに多数の処理ノードがあるIoT(Internet of Things)は、インテリジェントアプリケーションをサポートするための新たな経路を開く。
このようなアプリケーションは、ネットワークを介してエッジノードに転送されるIoTデバイスによって収集された膨大な量のデータに対して提供される。
議論されたデータ上でさまざまな処理アクティビティを実行することができ、ECノード間の複数の協調的な機会は、望ましいタスクの実行を容易にします。
本稿では、類似したデータを持つピアノードについて必要な知識を提供するために、ECノード間の実際のデータよりもデータシナプスの交換を推奨する。
論文 参考訳(メタデータ) (2021-07-22T10:22:37Z) - Modeling Stakeholder-centric Value Chain of Data to Understand Data
Exchange Ecosystem [0.12891210250935145]
本稿では,データビジネスにおける利害関係者間の関係に着目し,利害関係者中心の価値連鎖(SVC)を記述するモデルを提案する。
SVCモデルは、データ交換エコシステムの構造的特性の分析と理解を可能にする。
論文 参考訳(メタデータ) (2020-05-22T05:04:08Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z) - Variable-Based Network Analysis of Datasets on Data Exchange Platforms [0.15229257192293197]
2つのデータプラットフォームサービス上のデータセットのメタデータに対して,新しい変数ベース構造解析を用いたネットワークアプローチを適用する。
データネットワークの構造は、人間関係のネットワークと同様、局所的に密集しており、非常に順応的であることに注意された。
論文 参考訳(メタデータ) (2020-03-11T04:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。