論文の概要: Dissecting FLOPs along input dimensions for GreenAI cost estimations
- arxiv url: http://arxiv.org/abs/2107.11949v1
- Date: Mon, 26 Jul 2021 04:08:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-27 15:57:35.225150
- Title: Dissecting FLOPs along input dimensions for GreenAI cost estimations
- Title(参考訳): GreenAIコスト推定のための入力次元に沿ったFLOPの分離
- Authors: Andrea Asperti, Davide Evangelista, Moreno Marzolla
- Abstract要約: GreenAIのプロモーターは、ニューラルネットワークの計算コストの尺度として浮動小数点演算(FLOP)を使うことを提案した。
本稿では,α-FLOPと呼ばれる畳み込み層に対する浮動小数点演算の計算法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The term GreenAI refers to a novel approach to Deep Learning, that is more
aware of the ecological impact and the computational efficiency of its methods.
The promoters of GreenAI suggested the use of Floating Point Operations (FLOPs)
as a measure of the computational cost of Neural Networks; however, that
measure does not correlate well with the energy consumption of hardware
equipped with massively parallel processing units like GPUs or TPUs. In this
article, we propose a simple refinement of the formula used to compute floating
point operations for convolutional layers, called {\alpha}-FLOPs, explaining
and correcting the traditional discrepancy with respect to different layers,
and closer to reality. The notion of {\alpha}-FLOPs relies on the crucial
insight that, in case of inputs with multiple dimensions, there is no reason to
believe that the speedup offered by parallelism will be uniform along all
different axes.
- Abstract(参考訳): GreenAIという用語は、Deep Learningに対する新しいアプローチを指しており、その手法の生態的影響と計算効率をよりよく認識している。
GreenAIのプロモーターは、ニューラルネットワークの計算コストの尺度として浮動小数点演算(FLOP)を使うことを提案したが、GPUやTPUのような大規模並列処理ユニットを備えたハードウェアのエネルギー消費と相関しない。
本稿では, 畳み込み層に対する浮動小数点演算の計算法である {\alpha}-FLOPsについて, 従来の相違を説明・修正し, 現実に近づいた計算法を提案する。
α}-flops の概念は、多次元の入力の場合、平行性によって与えられるスピードアップが全ての異なる軸に沿って一様であると考える理由がないという重要な洞察に依存している。
関連論文リスト
- Separable DeepONet: Breaking the Curse of Dimensionality in Physics-Informed Machine Learning [0.0]
ラベル付きデータセットがない場合、PDE残留損失を利用して物理系を学習する。
この手法は、主に次元の呪いによる重要な計算課題に直面するが、計算コストは、より詳細な離散化とともに指数関数的に増加する。
本稿では,これらの課題に対処し,高次元PDEのスケーラビリティを向上させるために,分離可能なDeepONetフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-07-21T16:33:56Z) - Inferring Dynamic Networks from Marginals with Iterative Proportional Fitting [57.487936697747024]
実世界のデータ制約から生じる一般的なネットワーク推論問題は、その時間集約された隣接行列から動的ネットワークを推論する方法である。
本稿では,ネットワーク構造に対する最小限の変更の下でIPFの収束を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-28T20:24:56Z) - PIPE : Parallelized Inference Through Post-Training Quantization
Ensembling of Residual Expansions [23.1120983784623]
PIPEは、残差誤差展開とグループ間隔とアンサンブル近似を利用して、より良い並列化を実現する量子化法である。
すべてのベンチマークアプリケーション(ビジョンからNLPタスクまで)、アーキテクチャ(ConvNet、トランスフォーマー、ビット幅)において、優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-11-27T13:29:34Z) - Layer-wise Feedback Propagation [53.00944147633484]
本稿では、ニューラルネットワークのような予測器のための新しいトレーニング手法であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決に対するそれぞれの貢献に基づいて、個々のコネクションに報酬を割り当てる。
各種モデルやデータセットの勾配降下に匹敵する性能を達成できることの有効性を実証する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
有限精度レベルは、固定精度フォーマットで重みとアクティベーションを定量化する量子ニューラルネットワーク(QNN)を使用して取得される。
提案するFLフレームワークは,ベースラインFLアルゴリズムと比較して,収束までのエネルギー消費量を最大70%削減することができる。
論文 参考訳(メタデータ) (2022-07-19T16:37:24Z) - Deep learning via message passing algorithms based on belief propagation [2.931240348160871]
本稿では,局所的なエントロピー分布に偏りを持つ強化場を有するBPベースのメッセージパッシングアルゴリズムのファミリについて述べる。
これらのアルゴリズムは、SGDにインスパイアされたソリューションに匹敵するパフォーマンスで、離散重みとアクティベーションを持つ多層ニューラルネットワークをトレーニングすることができる。
論文 参考訳(メタデータ) (2021-10-27T16:52:26Z) - 1-Bit Compressive Sensing for Efficient Federated Learning Over the Air [32.14738452396869]
本稿では,1ビットセンシング(CS)をアナログアグリゲーション送信に組み込んだ,空気上の通信効率の高い学習手法を開発し,解析する。
スケーラブルコンピューティングでは,大規模ネットワークに適した効率的な実装を開発する。
シミュレーションの結果,提案した1ビットCSベースのFLは理想的な場合と同等の性能を示した。
論文 参考訳(メタデータ) (2021-03-30T03:50:31Z) - Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing
its Gradient Estimator Bias [62.43908463620527]
実際には、EPはMNISTよりも難しい視覚タスクにスケールしない。
我々は、有限なヌーディングの使用に固有のEPの勾配推定のバイアスがこの現象に責任があることを示しています。
これらの結果は、EPをディープニューラルネットワークにおける誤差勾配を計算するスケーラブルなアプローチとして強調し、ハードウェア実装を動機付けている。
論文 参考訳(メタデータ) (2021-01-14T10:23:40Z) - Relative gradient optimization of the Jacobian term in unsupervised deep
learning [9.385902422987677]
データを正しく記述した表現的確率モデルを学習することは、機械学習におけるユビキタスな問題である。
このタスクには深度モデルが広く使用されているが、その最大可能性に基づくトレーニングでは、ジャコビアンの対数行列式を推定する必要がある。
このようなニューラルネットワークの正確なトレーニングのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-26T16:41:08Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。