Quantum communications in a moderate-to-strong turbulent space
- URL: http://arxiv.org/abs/2107.12415v3
- Date: Thu, 3 Feb 2022 09:42:27 GMT
- Title: Quantum communications in a moderate-to-strong turbulent space
- Authors: Masoud Ghalaii and Stefano Pirandola
- Abstract summary: The free-space optical (FSO) channel is more difficult to study than a stable fiber-based link.
This work considers the FSO channel in the more challenging regime of moderate-to-strong turbulence.
In such a regime we rigorously investigate ultimate limits for quantum communications and show that composable keys can be extracted using CV-QKD.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the invention of the laser in the 60s, one of the most fundamental
communication channels has been the free-space optical channel. For this type
of channel, a number of effects generally need to be considered, including
diffraction, refraction, atmospheric extinction, pointing errors and, most
importantly, turbulence. Because of all these adverse features, the free-space
optical (FSO) channel is more difficult to study than a stable fiber-based
link. For the same reasons, only recently it has been possible to establish the
ultimate performances achievable in quantum communications via free-space
channels, together with practical rates for continuous variable (CV) quantum
key distribution (QKD). Differently from previous literature, mainly focused on
the regime of weak turbulence, this work considers the FSO channel in the more
challenging regime of moderate-to-strong turbulence, where effects of beam
widening and breaking are more important than beam wandering. This regime may
occur in long-distance free-space links on the ground, in uplink to
high-altitude platform systems (HAPS) and, more interestingly, in downlink from
near-horizon satellites. In such a regime we rigorously investigate ultimate
limits for quantum communications and show that composable keys can be
extracted using CV-QKD.
Related papers
- Fast Adaptive Optics for High-Dimensional Quantum Communications in
Turbulent Channels [0.0]
Quantum Key Distribution (QKD) promises a provably secure method to transmit information from one party to another.
Free-space QKD allows for this information to be sent over great distances and in places where fibre-based communications cannot be implemented, such as ground-satellite.
The primary limiting factor for free-space links is the effect of atmospheric turbulence, which can result in significant error rates and increased losses in QKD channels.
Here, we employ the use of a high-speed Adaptive Optics (AO) system to make real-time corrections to the wavefront distortions on spatial modes that are used for
arXiv Detail & Related papers (2023-11-21T23:05:11Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
We develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs)
We propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs.
In an image classification task, extensive simulations corroborate the effectiveness of eSQFL.
arXiv Detail & Related papers (2022-12-04T03:18:03Z) - A CubeSat platform for space based quantum key distribution [62.997667081978825]
We report on the follow-up mission of SpooQy-1, a 3U CubeSat that successfully demonstrated the generation of polarization-entangled photons in orbit.
The next iteration of the mission will showcase satellite-to-ground quantum key distribution based on a compact source of polarization-entangled photon-pairs.
We briefly describe the design of the optical ground station that we are currently building in Singapore for receiving the quantum signal.
arXiv Detail & Related papers (2022-04-23T06:28:43Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Quantum Keyless Privacy vs. Quantum Key Distribution for Space Links [0.0]
We study information theoretical security for space links between a satellite and a ground-station.
We demonstrate information theoretical secure communication rates (positive keyless private capacity) over a classical-quantum wiretap channel.
arXiv Detail & Related papers (2020-12-07T01:33:40Z) - Satellite Quantum Communications: Fundamental Bounds and Practical
Security [0.0]
We apply and extend recent results in free-space quantum communications to determine the ultimate limits at which secret bits can be distributed via satellites.
We study the composable finite-size secret key rates that are achievable by protocols of continuous variable quantum key distribution.
We present a study with a sun-synchronous satellite, showing that its key distribution rate is able to outperform a ground chain of ideal quantum repeaters.
arXiv Detail & Related papers (2020-12-03T06:53:57Z) - Limits and Security of Free-Space Quantum Communications [0.0]
We show that the composable secret-key rate achievable by a suitable coherent-state protocol is sufficiently close to these limits.
Our work provides analytical tools for assessing the composable finite-size security of coherent-state protocols in general conditions.
arXiv Detail & Related papers (2020-10-08T18:00:02Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Adaptive-optics-enabled quantum communication: A technique for daytime
space-to-Earth links [0.0]
Previous demonstrations of free-space quantum communication in daylight have been touted as significant for the development of global-scale quantum networks.
We report a quantum communication field experiment under conditions representative of daytime downlinks from space.
High signal-to-noise probabilities and low quantum-bit-error rates were demonstrated over a wide range of channel radiances and turbulence conditions.
arXiv Detail & Related papers (2020-06-13T23:40:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.