Linear Prediction Residual for Efficient Diagnosis of Parkinson's
Disease from Gait
- URL: http://arxiv.org/abs/2107.12878v1
- Date: Fri, 9 Jul 2021 20:23:54 GMT
- Title: Linear Prediction Residual for Efficient Diagnosis of Parkinson's
Disease from Gait
- Authors: Shanmukh Alle and U. Deva Priyakumar
- Abstract summary: Parkinson's Disease (PD) is a chronic and progressive neurological disorder that results in rigidity, tremors and postural instability.
There is no definite medical test to diagnose PD and diagnosis is mostly a clinical exercise.
We propose LPGNet, a fast and accurate method to diagnose PD from gait.
- Score: 1.713291434132985
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Parkinson's Disease (PD) is a chronic and progressive neurological disorder
that results in rigidity, tremors and postural instability. There is no
definite medical test to diagnose PD and diagnosis is mostly a clinical
exercise. Although guidelines exist, about 10-30% of the patients are wrongly
diagnosed with PD. Hence, there is a need for an accurate, unbiased and fast
method for diagnosis. In this study, we propose LPGNet, a fast and accurate
method to diagnose PD from gait. LPGNet uses Linear Prediction Residuals (LPR)
to extract discriminating patterns from gait recordings and then uses a 1D
convolution neural network with depth-wise separable convolutions to perform
diagnosis. LPGNet achieves an AUC of 0.91 with a 21 times speedup and about 99%
lesser parameters in the model compared to the state of the art. We also
undertake an analysis of various cross-validation strategies used in literature
in PD diagnosis from gait and find that most methods are affected by some form
of data leakage between various folds which leads to unnecessarily large models
and inflated performance due to overfitting. The analysis clears the path for
future works in correctly evaluating their methods.
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - Evaluating Echo State Network for Parkinson's Disease Prediction using
Voice Features [1.2289361708127877]
This study aims to develop a diagnostic model capable of achieving both high accuracy and minimizing false negatives.
Various machine learning methods, including Echo State Networks (ESN), Random Forest, k-nearest Neighbors, Support Vector, Extreme Gradient Boosting, and Decision Tree, are employed and thoroughly evaluated.
ESN consistently maintains a false negative rate of less than 8% in 83% of cases.
arXiv Detail & Related papers (2024-01-28T14:39:43Z) - PULSAR: Graph based Positive Unlabeled Learning with Multi Stream
Adaptive Convolutions for Parkinson's Disease Recognition [1.9482539692051932]
Parkinsons disease (PD) is a neuro-degenerative disorder that affects movement, speech, and coordination.
We present PULSAR, a novel method to screen for PD from webcam-recorded videos of finger-tapping.
We used an adaptive graph convolutional neural network to dynamically learn the temporal graph specific to the finger-tapping task.
arXiv Detail & Related papers (2023-12-10T05:56:20Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
This study presents a deep learning-based model for the diagnosis of Parkinson's disease (PD) using resting state electroencephalogram (EEG) signal.
The model is designed using a hybrid model, consists of convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU) and attention mechanism.
The results show that the proposed model can accurately diagnose PD with high performance on both the training and hold-out datasets.
arXiv Detail & Related papers (2023-08-14T20:06:19Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Spatiotemporal Ground Reaction Force Analysis using Convolutional Neural
Networks to Analyze Parkinsonian Gait [0.0]
Parkinsons disease (PD) is a non-curable disease that commonly found among elders that greatly reduce their quality of life.
The present paper has identified raw ground reaction force (GRF) as a key parameter to identify changes in human gait patterns associated with PD.
The proposed algorithm is capable of identifying the severity of the PD and distinguishing the parkinsonian gait from the healthy gait.
arXiv Detail & Related papers (2021-02-01T04:30:34Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.