論文の概要: The social dilemma in AI development and why we have to solve it
- arxiv url: http://arxiv.org/abs/2107.12977v1
- Date: Tue, 27 Jul 2021 17:43:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-28 14:50:46.730304
- Title: The social dilemma in AI development and why we have to solve it
- Title(参考訳): AI開発における社会的ジレンマと、それを解決しなければならない理由
- Authors: Inga Str\"umke, Marija Slavkovik, Vince Madai
- Abstract要約: AI開発者は、AI開発倫理において社会的ジレンマに直面し、倫理的ベストプラクティスが広く適用されるのを防ぎます。
我々は、AI開発は、社会的ジレンマを克服するために専門化されるべきであり、このプロセスのテンプレートとして医療をどのように使用できるかについて議論する。
- 参考スコア(独自算出の注目度): 2.707154152696381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the demand for ethical artificial intelligence (AI) systems increases,
the number of unethical uses of AI accelerates, even though there is no
shortage of ethical guidelines. We argue that a main underlying cause for this
is that AI developers face a social dilemma in AI development ethics,
preventing the widespread adaptation of ethical best practices. We define the
social dilemma for AI development and describe why the current crisis in AI
development ethics cannot be solved without relieving AI developers of their
social dilemma. We argue that AI development must be professionalised to
overcome the social dilemma, and discuss how medicine can be used as a template
in this process.
- Abstract(参考訳): 倫理的人工知能(AI)システムの需要は増加しているが、倫理的ガイドラインが不足しているにもかかわらず、AIの非倫理的利用の数は加速している。
この主な原因は、AI開発者がAI開発倫理の社会的ジレンマに直面し、倫理的ベストプラクティスの広範な適用を妨げることだ、と私たちは主張しています。
我々は、AI開発における社会的ジレンマを定義し、AI開発倫理の現在の危機が、AI開発者を社会的ジレンマから救うことなく解決できない理由を説明する。
我々は、AI開発は、社会的ジレンマを克服するために専門化されるべきであり、このプロセスのテンプレートとして医療をどのように使用できるかについて議論する。
関連論文リスト
- Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - A Bibliometric View of AI Ethics Development [4.0998481751764]
我々は過去20年間,キーワード検索に基づくAI倫理文献の文献分析を行った。
AI倫理の次のフェーズは、AIが人間とマッチしたり、知的に超越したりするにつれて、AIをより機械的に近いものにすることに集中する可能性が高いと推測する。
論文 参考訳(メタデータ) (2024-02-08T16:36:55Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - A Deployment Model to Extend Ethically Aligned AI Implementation Method
ECCOLA [5.28595286827031]
本研究の目的は、ECCOLAの採用を促進するために、ECCOLAをデプロイメントモデルで拡張することである。
このモデルには、倫理的AI開発における倫理的ギャップや成果のコミュニケーションを容易にするための単純なメトリクスが含まれている。
論文 参考訳(メタデータ) (2021-10-12T12:22:34Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z) - Modelos din\^amicos aplicados \`a aprendizagem de valores em
intelig\^encia artificial [0.0]
この地域の数人の研究者が、人間と環境の保存のための堅牢で有益な、安全なAIの概念を開発した。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
おそらくこの難しさは、認知的手法を使って価値を表現するという問題に対処する方法から来ています。
論文 参考訳(メタデータ) (2020-07-30T00:56:11Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
この分野の数人の研究者が、堅牢で有益で安全な人工知能の概念を開発しようとしている。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
この問題に対する可能なアプローチは、SEDのような理論モデルを使用することである。
論文 参考訳(メタデータ) (2020-05-12T03:58:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。