Multi-objective optimization and explanation for stroke risk assessment
in Shanxi province
- URL: http://arxiv.org/abs/2107.14060v2
- Date: Sat, 31 Jul 2021 09:30:26 GMT
- Title: Multi-objective optimization and explanation for stroke risk assessment
in Shanxi province
- Authors: Jing Ma, Yiyang Sun, Junjie Liu, Huaxiong Huang, Xiaoshuang Zhou and
Shixin Xu
- Abstract summary: Stroke is the top leading causes of death in China.
Model and analysis tool in this paper not only gave the theoretical optimized prediction method, but also provided the attribution explanation of risk states and transition direction of each patient.
- Score: 7.880149888890841
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stroke is the top leading causes of death in China (Zhou et al. The Lancet
2019). A dataset from Shanxi Province is used to identify the risk of each
patient's at four states low/medium/high/attack and provide the state
transition tendency through a SHAP DeepExplainer. To improve the accuracy on an
imbalance sample set, the Quadratic Interactive Deep Neural Network (QIDNN)
model is first proposed by flexible selecting and appending of quadratic
interactive features. The experimental results showed that the QIDNN model with
7 interactive features achieve the state-of-art accuracy $83.25\%$. Blood
pressure, physical inactivity, smoking, weight and total cholesterol are the
top five important features. Then, for the sake of high recall on the most
urgent state, attack state, the stroke occurrence prediction is taken as an
auxiliary objective to benefit from multi-objective optimization. The
prediction accuracy was promoted, meanwhile the recall of the attack state was
improved by $24.9\%$ (to $84.83\%$) compared to QIDNN (from $67.93\%$) with
same features. The prediction model and analysis tool in this paper not only
gave the theoretical optimized prediction method, but also provided the
attribution explanation of risk states and transition direction of each
patient, which provided a favorable tool for doctors to analyze and diagnose
the disease.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - A comparative study on feature selection for a risk prediction model for
colorectal cancer [0.0]
This work is focused on colorectal cancer, assessing several feature ranking algorithms in terms of performance for a set of risk prediction models.
A visual approach proposed in this work allows to see that the Neural Network-based wrapper ranking is the most unstable while the Random Forest is the most stable.
arXiv Detail & Related papers (2024-02-07T22:14:14Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
We first identify a fundamental pattern, self-excitation, as the primary cause of Q-value estimation divergence in offline RL.
We then propose a novel Self-Excite Eigenvalue Measure (SEEM) metric to measure the evolving property of Q-network at training.
For the first time, our theory can reliably decide whether the training will diverge at an early stage.
arXiv Detail & Related papers (2023-10-06T17:57:44Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Improvement of a Prediction Model for Heart Failure Survival through
Explainable Artificial Intelligence [0.0]
This work presents an explainability analysis and evaluation of a prediction model for heart failure survival.
The model employs a data workflow pipeline able to select the best ensemble tree algorithm as well as the best feature selection technique.
The paper's main contribution is an explainability-driven approach to select the best prediction model for HF survival based on an accuracy-explainability balance.
arXiv Detail & Related papers (2021-08-20T09:03:26Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
arXiv Detail & Related papers (2021-08-17T05:49:43Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - Explaining COVID-19 and Thoracic Pathology Model Predictions by
Identifying Informative Input Features [47.45835732009979]
Neural networks have demonstrated remarkable performance in classification and regression tasks on chest X-rays.
Features attribution methods identify the importance of input features for the output prediction.
We evaluate our methods using both human-centric (ground-truth-based) interpretability metrics, and human-independent feature importance metrics on NIH Chest X-ray8 and BrixIA datasets.
arXiv Detail & Related papers (2021-04-01T11:42:39Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Gradient Boosting on Decision Trees for Mortality Prediction in
Transcatheter Aortic Valve Implantation [5.050648346154715]
Current prognostic risk scores in cardiac surgery are based on statistics and do not yet benefit from machine learning.
This research aims to create a machine learning model to predict one-year mortality of a patient after TAVI.
arXiv Detail & Related papers (2020-01-08T10:04:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.