Survey of Recent Multi-Agent Reinforcement Learning Algorithms Utilizing
Centralized Training
- URL: http://arxiv.org/abs/2107.14316v1
- Date: Thu, 29 Jul 2021 20:29:12 GMT
- Title: Survey of Recent Multi-Agent Reinforcement Learning Algorithms Utilizing
Centralized Training
- Authors: Piyush K. Sharma, Rolando Fernandez, Erin Zaroukian, Michael Dorothy,
Anjon Basak, and Derrik E. Asher
- Abstract summary: We discuss variations of centralized training and describe a recent survey of algorithmic approaches.
The goal is to explore how different implementations of information sharing mechanism in centralized learning may give rise to distinct group coordinated behaviors.
- Score: 0.7588690078299698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Much work has been dedicated to the exploration of Multi-Agent Reinforcement
Learning (MARL) paradigms implementing a centralized learning with
decentralized execution (CLDE) approach to achieve human-like collaboration in
cooperative tasks. Here, we discuss variations of centralized training and
describe a recent survey of algorithmic approaches. The goal is to explore how
different implementations of information sharing mechanism in centralized
learning may give rise to distinct group coordinated behaviors in multi-agent
systems performing cooperative tasks.
Related papers
- Contextual Knowledge Sharing in Multi-Agent Reinforcement Learning with Decentralized Communication and Coordination [0.9776703963093367]
Multi-Agent Reinforcement Learning (Dec-MARL) has emerged as a pivotal approach for addressing complex tasks in dynamic environments.
This paper presents a novel Dec-MARL framework that integrates peer-to-peer communication and coordination, incorporating goal-awareness and time-awareness into the agents' knowledge-sharing processes.
arXiv Detail & Related papers (2025-01-26T22:49:50Z) - Decentralized multi-agent reinforcement learning algorithm using a cluster-synchronized laser network [1.124958340749622]
We propose a photonic-based decision-making algorithm to address the competitive multi-armed bandit problem.
Our numerical simulations demonstrate that chaotic oscillations and cluster synchronization of optically coupled lasers, along with our proposed decentralized coupling adjustment, efficiently balance exploration and exploitation.
arXiv Detail & Related papers (2024-07-12T09:38:47Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Consensus Learning for Cooperative Multi-Agent Reinforcement Learning [12.74348597962689]
We propose consensus learning for cooperative multi-agent reinforcement learning.
We feed the inferred consensus as an explicit input to the network of agents.
Our proposed method can be extended to various multi-agent reinforcement learning algorithms.
arXiv Detail & Related papers (2022-06-06T12:43:07Z) - RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning [55.55009081609396]
We propose a novel method, called Relation-Aware Credit Assignment (RACA), which achieves zero-shot generalization in ad-hoc cooperation scenarios.
RACA takes advantage of a graph-based encoder relation to encode the topological structure between agents.
Our method outperforms baseline methods on the StarCraftII micromanagement benchmark and ad-hoc cooperation scenarios.
arXiv Detail & Related papers (2022-06-02T03:39:27Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in
Cooperative Tasks [11.480994804659908]
Multi-agent deep reinforcement learning (MARL) suffers from a lack of commonly-used evaluation tasks and criteria.
We provide a systematic evaluation and comparison of three different classes of MARL algorithms.
Our experiments serve as a reference for the expected performance of algorithms across different learning tasks.
arXiv Detail & Related papers (2020-06-14T11:22:53Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.