Topological Similarity Index and Loss Function for Blood Vessel
Segmentation
- URL: http://arxiv.org/abs/2107.14531v1
- Date: Fri, 30 Jul 2021 10:24:47 GMT
- Title: Topological Similarity Index and Loss Function for Blood Vessel
Segmentation
- Authors: R. J. Ara\'ujo, J. S. Cardoso, H. P. Oliveira
- Abstract summary: We propose a similarity index which captures the consistency of the predicted segmentations having as reference the ground truth.
We also design a novel loss function based on the morphological closing operator and show how it allows to learn deep neural network models which produce more topologically coherent masks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blood vessel segmentation is one of the most studied topics in computer
vision, due to its relevance in daily clinical practice. Despite the evolution
the field has been facing, especially after the dawn of deep learning,
important challenges are still not solved. One of them concerns the consistency
of the topological properties of the vascular trees, given that the best
performing methodologies do not directly penalize mistakes such as broken
segments and end up producing predictions with disconnected trees. This is
particularly relevant in graph-like structures, such as blood vessel trees,
given that it puts at risk the characterization steps that follow the
segmentation task. In this paper, we propose a similarity index which captures
the topological consistency of the predicted segmentations having as reference
the ground truth. We also design a novel loss function based on the
morphological closing operator and show how it allows to learn deep neural
network models which produce more topologically coherent masks. Our experiments
target well known retinal benchmarks and a coronary angiogram database.
Related papers
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Topologically Faithful Multi-class Segmentation in Medical Images [43.6770098513581]
We propose a general loss function for topologically faithful multi-class segmentation.
We project the N-class segmentation problem to N single-class segmentation tasks.
Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
arXiv Detail & Related papers (2024-03-16T19:11:57Z) - RRWNet: Recursive Refinement Network for Effective Retinal Artery/Vein Segmentation and Classification [0.8386558353546658]
A thorough analysis of the retinal vasculature requires the segmentation of the blood vessels and their classification into arteries and veins.
We introduce RRWNet, a novel end-to-end deep learning framework that addresses this limitation.
In particular, RRWNet is composed of two specializedworks: a Base subnetwork that generates base segmentation maps from the input images, and a Recursive Refinement subnetwork that iteratively improves these maps.
arXiv Detail & Related papers (2024-02-05T16:35:29Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
We propose a contrastive variational auto-encoder that can filter out irrelevant features and synthesize a latent image, named deep angiogram.
The generalizability of the synthetic network is improved by the contrastive loss that makes the model less sensitive to variations of image contrast and noisy features.
arXiv Detail & Related papers (2023-07-01T06:13:10Z) - The Topology-Overlap Trade-Off in Retinal Arteriole-Venule Segmentation [0.0]
convolutional neural networks can achieve high overlap between predictions and expert annotations.
We show that our model is able to produce results on par with state-of-the-art from the point of view of overlap.
arXiv Detail & Related papers (2023-03-31T13:01:05Z) - Automated Coronary Arteries Labeling Via Geometric Deep Learning [13.515293812745343]
We propose an intuitive graph representation method, well suited to use with 3D coordinate data obtained from angiography scans.
We subsequently seek to analyze subject-specific graphs using geometric deep learning.
The proposed models leverage expert annotated labels from 141 patients to learn representations of each coronary segment, while capturing the effects of anatomical variability within the training data.
arXiv Detail & Related papers (2022-12-01T09:31:08Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - clDice -- A Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation [57.20783326661043]
We introduce a novel similarity measure termed centerlineDice (short clDice)
We theoretically prove that clDice guarantees topology preservation up to homotopy equivalence for binary 2D and 3D segmentation.
We benchmark the soft-clDice loss on five public datasets, including vessels, roads and neurons (2D and 3D)
arXiv Detail & Related papers (2020-03-16T16:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.