Realizable time crystal of four silicon quantum dot qubits
- URL: http://arxiv.org/abs/2209.13649v2
- Date: Sun, 16 Apr 2023 02:06:53 GMT
- Title: Realizable time crystal of four silicon quantum dot qubits
- Authors: Nathan L. Foulk and Sankar Das Sarma
- Abstract summary: We discuss possible realizations of quantum Floquet matter in modern silicon spin qubits based in quantum dots.
This is significant given that spin qubits have fallen behind other qubit architectures in terms of size and control.
We demonstrate that even for a spin chain of four qubits, rich regime structures can be established by observing signatures of the discrete time crystal.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that exciting possible realizations of quantum Floquet matter
are within reach for modern silicon spin qubits based in quantum dots, most
notably the discrete time crystal (DTC). This is significant given that spin
qubits have fallen behind other qubit architectures in terms of size and
control. However, silicon spin qubits are especially well suited to this task
as the charge noise that usually foils gate operations can now be leveraged as
an asset in this time-crystal realization. We illustrate differences between
prethermal phenomena and true time-crystalline spatiotemporal order. We
demonstrate that even for a spin chain of four qubits, rich regime structures
can be established by observing signatures of the discrete time crystal and the
Floquet symmetry-protected topological regime both distinct from the thermal
regime. We also analyze the persistence of these signatures at longer chain
lengths, showing that the DTC lifetime grows exponentially with the system
length and that these signatures may even be detectable for chains as small as
three qubits. We also discuss the effects of longer pulse durations and the
effectiveness of pulse sequences for converting the exchange interaction to an
Ising model. Our theoretical predictions are well suited for immediate
experimental implementations using currently existing quantum dot spin qubit
systems.
Related papers
- Observation of a time crystal comb in a driven-dissipative system with Rydberg gas [2.4898174182192974]
Time crystals manifest as stable and periodic behavior that breaks time translation symmetry.
In an open quantum system, many-body interaction subjected to dissipation allows one to develop the time crystalline order in an unprecedented way.
We report the observation of a time crystal comb in the continuously driven-dissipative and strongly interacting Rydberg thermal gas.
arXiv Detail & Related papers (2024-02-20T16:09:29Z) - A Robust Large-Period Discrete Time Crystal and its Signature in a Digital Quantum Computer [7.078842654618816]
Discrete time crystals (DTCs) are novel out-of-equilibrium quantum states of matter which break time translational symmetry.
We develop an intuitive interacting spin-$1/2$ system that supports the more non-trivial period-quadrupling DTCs.
We find a strong signature of the predicted $4T$-DTC that is robust against and, in some cases, amplified by different types of disorders.
arXiv Detail & Related papers (2023-09-20T18:01:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Emergence and Dynamical Stability of Charge Time-Crystal in a
Current-Carrying Quantum Dot Simulator [0.0]
We show that time-crystallinity can be measured directly in the charge-current from a spin-less Hubbard ladder.
We demonstrate that one can dynamically tune the system out and then back into the time-crystal phase, proving its robustness against external forcings.
arXiv Detail & Related papers (2022-05-13T03:48:45Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Realizing discrete time crystal in an one-dimensional superconducting
qubit chain [11.115884267868482]
Floquet systems can support a discrete time-translation symmetry (TTS) broken phase, dubbed the discrete time crystal (DTC)
Here we report the observation of the DTC in an one-dimensional superconducting qubit chain.
arXiv Detail & Related papers (2021-08-02T14:44:30Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Discrete time-crystalline order enabled by quantum many-body scars:
entanglement steering via periodic driving [0.0]
We show that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving.
Our results suggest a route to controlling entanglement in quantum systems by combining periodic driving with many-body scars.
arXiv Detail & Related papers (2021-02-25T20:41:47Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.