Staged trees and asymmetry-labeled DAGs
- URL: http://arxiv.org/abs/2108.01994v1
- Date: Wed, 4 Aug 2021 12:20:47 GMT
- Title: Staged trees and asymmetry-labeled DAGs
- Authors: Gherardo Varando, Federico Carli, Manuele Leonelli
- Abstract summary: We introduce a minimal Bayesian network representation of the staged tree, which can be used to read conditional independences in an intuitive way.
We also define a new labeled graph, termed asymmetry-labeled directed acyclic graph, whose edges are labeled to denote the type of dependence existing between any two random variables.
- Score: 2.66269503676104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian networks are a widely-used class of probabilistic graphical models
capable of representing symmetric conditional independence between variables of
interest using the topology of the underlying graph. They can be seen as a
special case of the much more general class of models called staged trees,
which can represent any type of non-symmetric conditional independence. Here we
formalize the relationship between these two models and introduce a minimal
Bayesian network representation of the staged tree, which can be used to read
conditional independences in an intuitive way. Furthermore, we define a new
labeled graph, termed asymmetry-labeled directed acyclic graph, whose edges are
labeled to denote the type of dependence existing between any two random
variables. Various datasets are used to illustrate the methodology,
highlighting the need to construct models which more flexibly encode and
represent non-symmetric structures.
Related papers
- Identifiability of a statistical model with two latent vectors: Importance of the dimensionality relation and application to graph embedding [2.6651200086513107]
Identifiability of statistical models is a key notion in unsupervised representation learning.
This paper proposes a statistical model of two latent vectors with single auxiliary data generalizing nonlinear ICA.
Surprisingly, we prove that the indeterminacies of the proposed model has the same as emphlinear ICA under certain conditions.
arXiv Detail & Related papers (2024-05-30T07:11:20Z) - Cyclic Directed Probabilistic Graphical Model: A Proposal Based on
Structured Outcomes [0.0]
We describe a probabilistic graphical model - probabilistic relation network - that allows the direct capture of directional cyclic dependencies.
This model does not violate the probability axioms, and it supports learning from observed data.
Notably, it supports probabilistic inference, making it a prospective tool in data analysis and in expert and design-making applications.
arXiv Detail & Related papers (2023-10-25T10:19:03Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text.
This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model.
We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle.
arXiv Detail & Related papers (2023-10-23T04:35:58Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
We investigate graph representation learning approaches that enable models to generalize across graphs.
We show that using random projections to estimate multiple powers of the transition matrix allows us to build a set of isomorphism-invariant features.
The resulting features can be used to recover enough information about the local neighborhood of a node to enable inference with relevance competitive to other approaches.
arXiv Detail & Related papers (2023-02-17T14:27:00Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Structural Learning of Simple Staged Trees [2.3572498744567127]
We introduce the first structural learning algorithms for the class of simple staged trees.
We show that data-learned simple staged trees often outperform Bayesian networks in model fit.
arXiv Detail & Related papers (2022-03-08T20:50:39Z) - An Interpretable Graph Generative Model with Heterophily [38.59200985962146]
We propose the first edge-independent graph generative model that is expressive enough to capture heterophily.
Our experiments demonstrate the effectiveness of our model for a variety of important application tasks.
arXiv Detail & Related papers (2021-11-04T17:34:39Z) - Joint Estimation of Image Representations and their Lie Invariants [57.3768308075675]
Images encode both the state of the world and its content.
The automatic extraction of this information is challenging because of the high-dimensionality and entangled encoding inherent to the image representation.
This article introduces two theoretical approaches aimed at the resolution of these challenges.
arXiv Detail & Related papers (2020-12-05T00:07:41Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.