Direct detection of quantum non-Gaussian light from a dispersively
coupled single atom
- URL: http://arxiv.org/abs/2108.02038v2
- Date: Mon, 14 Feb 2022 13:39:09 GMT
- Title: Direct detection of quantum non-Gaussian light from a dispersively
coupled single atom
- Authors: Jitendra K. Verma, Luk\'a\v{s} Lachman and Radim Filip
- Abstract summary: Many applications in quantum communication, sensing and computation need provably quantum non-Gaussian light.
Recently such light, witnessed by a negative Wigner function, has been estimated using homodyne tomography from a single atom dispersively coupled to a high-finesse cavity.
This opens an investigation of quantum non-Gaussian light for many experiments with atoms and solid-state emitters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many applications in quantum communication, sensing and computation need
provably quantum non-Gaussian light. Recently such light, witnessed by a
negative Wigner function, has been estimated using homodyne tomography from a
single atom dispersively coupled to a high-finesse cavity. This opens an
investigation of quantum non-Gaussian light for many experiments with atoms and
solid-state emitters. However, at their early stage, an atom or emitter in a
cavity system with different channels to the environment and additional noise
are insufficient to produce negative Wigner functions. Moreover, homodyne
detection is frequently challenging for such experiments. We analyse these
issues and prove that such cavities can be used to emit quantum non-Gaussian
light employing single-photon detection in the Hanbury Brown and Twiss
configuration and quantum non-Gaussianity criteria suitable for this
measurement. We investigate in detail cases of considerable cavity leakage when
the negativity of the Wigner function disappears completely. Advantageously,
quantum non-Gaussian light can be still conclusively proven for a large set of
the cavity parameters at the cost of overall measurement time, even if noise is
present.
Related papers
- Losses resistant verification of quantum non-Gaussian photon statistics [5.292867550832236]
Quantum non-Gaussian states of light have fundamental properties that are essential for a multitude of applications in quantum technology.
Many features are difficult to detect using standard criteria due to optical losses and detector inefficiency.
We employ a loss-mitigated verification technique utilising quantum non-Gaussian witnesses, which incorporate the known optical losses and detector inefficiency into their derivation.
arXiv Detail & Related papers (2024-08-21T12:54:46Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Quantum non-Gaussianity certification of photon-number-resolving
detectors [0.0]
We report on direct experimental certification of the quantum non-Gaussian character of a photon-number resolving detector.
certification protocol is based on an adaptation of the existing quantum non-Gaussianity criteria for quantum states to quantum measurements.
arXiv Detail & Related papers (2022-08-26T09:27:05Z) - Quantum non-Gaussianity of light and atoms [0.0]
Quantum non-Gaussian states of photons and phonons are conclusive witnesses of higher-than-quadratic nonlinearities in optical and mechanical processes.
This review introduces theoretical analyses of nonclassical and quantum non-Gaussian states of photons and phonons.
arXiv Detail & Related papers (2022-06-05T19:48:41Z) - Optimal strategy to certify quantum nonlocality [0.0]
certification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography.
We introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit.
We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.
arXiv Detail & Related papers (2021-07-19T19:32:32Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Direct experimental certification of quantum non-Gaussian character and
Wigner function negativity of single-photon detectors [0.0]
We propose and experimentally demonstrate a procedure for direct certification of quantum non-Gaussianity and Wigner function negativity.
We characterize the highly nonclassical properties of the detector by probing it with only two classical thermal states and a vacuum state.
Our results open the way for direct benchmarking of photonic quantum detectors with a few measurements on classical states.
arXiv Detail & Related papers (2021-01-10T09:37:10Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.