Universal high-fidelity quantum gates for spin-qubits in diamond
- URL: http://arxiv.org/abs/2403.10633v1
- Date: Fri, 15 Mar 2024 19:00:02 GMT
- Title: Universal high-fidelity quantum gates for spin-qubits in diamond
- Authors: H. P. Bartling, J. Yun, K. N. Schymik, M. van Riggelen, L. A. Enthoven, H. B. van Ommen, M. Babaie, F. Sebastiano, M. Markham, D. J. Twitchen, T. H. Taminiau,
- Abstract summary: Recent experiments have demonstrated multi-qubit quantum processors, optical interconnects, and basic quantum error correction protocols.
One of the key open challenges towards larger-scale systems is to realize high-fidelity universal quantum gates.
We design and demonstrate a complete high-fidelity gate set for the two-qubit system formed by the electron and nuclear spin of a nitrogen-vacancy center in diamond.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spins associated to solid-state colour centers are a promising platform for investigating quantum computation and quantum networks. Recent experiments have demonstrated multi-qubit quantum processors, optical interconnects, and basic quantum error correction protocols. One of the key open challenges towards larger-scale systems is to realize high-fidelity universal quantum gates. In this work, we design and demonstrate a complete high-fidelity gate set for the two-qubit system formed by the electron and nuclear spin of a nitrogen-vacancy center in diamond. We use gate set tomography (GST) to systematically optimise the gates and demonstrate single-qubit gate fidelities of up to $99.999(1)\%$ and a two-qubit gate fidelity of $99.93(5) \%$. Our gates are designed to decouple unwanted interactions and can be extended to other electron-nuclear spin systems. The high fidelities demonstrated provide new opportunities towards larger-scale quantum processing with colour-center qubits.
Related papers
- High-fidelity universal gates in the $^{171}$Yb ground state nuclear spin qubit [0.14213550976537648]
We demonstrate a universal high-fidelity gate-set with individually controlled and parallel application of single-qubit gates and two-qubit gates.
These results represent important milestones towards executing complex and general quantum computation with neutral atoms.
arXiv Detail & Related papers (2024-11-18T16:36:32Z) - Universal quantum computation using atoms in cross-cavity systems [0.0]
We theoretically investigate a single-step implementation of both a universal two- (CNOT) and three-qubit (quantum Fredkin) gates in a cross-cavity setup.
Within a high-cooper regime, the system exhibits an atomic-state-dependent $pi$-phase gate involving the two-mode single-photon bright and dark states.
arXiv Detail & Related papers (2023-08-28T20:09:54Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Two-qubit gate in neutral atoms using transitionless quantum driving [0.0]
A neutral-atom system serves as a promising platform for realizing gate-based quantum computing.
The two-qubit entangling gate fidelity lags behind competing platforms such as superconducting systems and trapped ions.
We propose a fast, robust, high-fidelity controlled-Z gate, based on the Rydberg-blockade mechanism, for neutral atoms.
arXiv Detail & Related papers (2022-06-17T17:51:49Z) - Fast universal quantum control above the fault-tolerance threshold in
silicon [0.0]
Electron spin qubits in silicon are particularly promising for a large-scale quantum computer due to their nanofabrication capability.
Here we demonstrate a two-qubit gate fidelity of 99.5 per cent, along with single-qubit gate fidelities of 99.8 per cent.
Our results demonstrate the universal gate fidelity beyond the fault-tolerance threshold and pave the way for scalable silicon quantum computers.
arXiv Detail & Related papers (2021-08-05T14:02:58Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.