論文の概要: Combining machine learning and data assimilation to forecast dynamical
systems from noisy partial observations
- arxiv url: http://arxiv.org/abs/2108.03561v1
- Date: Sun, 8 Aug 2021 03:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 14:58:30.887154
- Title: Combining machine learning and data assimilation to forecast dynamical
systems from noisy partial observations
- Title(参考訳): 雑音部分観測による予測力学系への機械学習とデータ同化の併用
- Authors: Georg A. Gottwald and Sebastian Reich
- Abstract要約: 本稿では,動的システムの伝搬器マップを部分的および雑音的な観測から学習するための教師付き学習手法を提案する。
RAFDAと呼ばれるランダムな特徴マップとデータ同化の組み合わせは、バッチデータを用いて動的に学習する標準的なランダムな特徴マップよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.76146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a supervised learning method to learn the propagator map of a
dynamical system from partial and noisy observations. In our computationally
cheap and easy-to-implement framework a neural network consisting of random
feature maps is trained sequentially by incoming observations within a data
assimilation procedure. By employing Takens' embedding theorem, the network is
trained on delay coordinates. We show that the combination of random feature
maps and data assimilation, called RAFDA, outperforms standard random feature
maps for which the dynamics is learned using batch data.
- Abstract(参考訳): 本稿では,部分的および雑音的観測から力学系のプロパゲータマップを学ぶための教師付き学習法を提案する。
計算量的に安価で実装が容易なフレームワークでは、ランダム特徴マップからなるニューラルネットワークは、データ同化手順内の入射観測によって順次訓練される。
Takensの埋め込み定理を用いることで、ネットワークは遅延座標に基づいて訓練される。
RAFDAと呼ばれるランダムな特徴マップとデータ同化の組み合わせは、バッチデータを用いて動的に学習する標準的なランダムな特徴マップよりも優れていることを示す。
関連論文リスト
- Custom DNN using Reward Modulated Inverted STDP Learning for Temporal
Pattern Recognition [0.0]
時間的スパイク認識は、異常検出、キーワードスポッティング、神経科学など、様々な領域において重要な役割を果たす。
本稿では,スパース事象系列データに基づく時間的スパイクパターン認識のための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-15T18:57:27Z) - Asynchronously Trained Distributed Topographic Maps [0.0]
分散トレーニングによって特徴マップを生成するために,N$の自律ユニットを用いたアルゴリズムを提案する。
単位の自律性は、分散探索とカスケード駆動の重み更新スキームを組み合わせることで、時間と空間のスパース相互作用によって達成される。
論文 参考訳(メタデータ) (2023-01-20T01:15:56Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Reconstructing shared dynamics with a deep neural network [0.0]
本稿では,時系列から隠れた共有ダイナミクスを2モジュールのフィードフォワードニューラルネットワークアーキテクチャにより同定する手法を提案する。
この手法は、実験的な介入が不可能な力学系の隠れた構成要素を明らかにする可能性がある。
論文 参考訳(メタデータ) (2021-05-05T20:55:53Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Network Classifiers Based on Social Learning [71.86764107527812]
空間と時間に対して独立に訓練された分類器を結合する新しい手法を提案する。
提案したアーキテクチャは、ラベルのないデータで時間とともに予測性能を改善することができる。
この戦略は高い確率で一貫した学習をもたらすことが示され、未訓練の分類器に対して頑健な構造が得られる。
論文 参考訳(メタデータ) (2020-10-23T11:18:20Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z) - Supervised learning from noisy observations: Combining machine-learning
techniques with data assimilation [0.6091702876917281]
本稿では,予測モデルと固有不確かさを,入射雑音観測と最適に組み合わせる方法について述べる。
得られた予測モデルは、訓練後、計算的に安価であると同時に、極めて優れた予測能力を有することを示す。
本手法は,予測タスクを超えて,確率的予測のための信頼性の高いアンサンブルを生成するとともに,マルチスケールシステムにおける効果的なモデルクロージャを学習するためにも有効であることを示す。
論文 参考訳(メタデータ) (2020-07-14T22:29:37Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
定常時間列のためのモデルベースアルゴリズムとデータ駆動型MLツールを組み合わせたフレームワークを提案する。
ニューラルネットワークは、時系列の分布を記述する因子グラフの特定のコンポーネントを別々に学習するために開発された。
本稿では,学習された定常因子グラフに基づく推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-05T07:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。