論文の概要: Supervised learning from noisy observations: Combining machine-learning
techniques with data assimilation
- arxiv url: http://arxiv.org/abs/2007.07383v3
- Date: Mon, 8 Mar 2021 11:45:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 14:34:34.104134
- Title: Supervised learning from noisy observations: Combining machine-learning
techniques with data assimilation
- Title(参考訳): ノイズ観測による教師付き学習:機械学習技術とデータ同化の併用
- Authors: Georg A. Gottwald and Sebastian Reich
- Abstract要約: 本稿では,予測モデルと固有不確かさを,入射雑音観測と最適に組み合わせる方法について述べる。
得られた予測モデルは、訓練後、計算的に安価であると同時に、極めて優れた予測能力を有することを示す。
本手法は,予測タスクを超えて,確率的予測のための信頼性の高いアンサンブルを生成するとともに,マルチスケールシステムにおける効果的なモデルクロージャを学習するためにも有効であることを示す。
- 参考スコア(独自算出の注目度): 0.6091702876917281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven prediction and physics-agnostic machine-learning methods have
attracted increased interest in recent years achieving forecast horizons going
well beyond those to be expected for chaotic dynamical systems. In a separate
strand of research data-assimilation has been successfully used to optimally
combine forecast models and their inherent uncertainty with incoming noisy
observations. The key idea in our work here is to achieve increased forecast
capabilities by judiciously combining machine-learning algorithms and data
assimilation. We combine the physics-agnostic data-driven approach of random
feature maps as a forecast model within an ensemble Kalman filter data
assimilation procedure. The machine-learning model is learned sequentially by
incorporating incoming noisy observations. We show that the obtained forecast
model has remarkably good forecast skill while being computationally cheap once
trained. Going beyond the task of forecasting, we show that our method can be
used to generate reliable ensembles for probabilistic forecasting as well as to
learn effective model closure in multi-scale systems.
- Abstract(参考訳): データ駆動予測と物理に依存しない機械学習手法は、カオス力学系に期待される以上の予測地平線を達成するために近年、関心を集めている。
予測モデルとその固有の不確実性と入ってくるノイズ観測とを最適に組み合わせるために、別の研究データ同化が成功している。
私たちの研究における重要なアイデアは、機械学習アルゴリズムとデータ同化を巧みに組み合わせて、予測能力を高めることです。
ランダム特徴写像の物理に依存しないデータ駆動アプローチを、アンサンブルカルマンフィルタデータ同化手順内の予測モデルとして組み合わせた。
入ってくるノイズ観測を組み込んで機械学習モデルを逐次学習する。
得られた予測モデルは,一度訓練すれば計算量的に安価であると同時に,非常に優れた予測能力を有することを示す。
本手法は,予測タスクを超えて,確率的予測のための信頼性の高いアンサンブルの生成や,マルチスケールシステムにおける効果的なモデル閉鎖学習に有効であることを示す。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - EAMDrift: An interpretable self retrain model for time series [0.0]
EAMDrift(EAMDrift)は、複数の個人予測器から予測を合成し、性能指標に従って予測を重み付けする新しい手法である。
EAMDriftはデータのアウト・オブ・ディストリビューションパターンに自動的に適応し、各瞬間に使用する最も適切なモデルを特定するように設計されている。
本研究は,EAMDriftが個々のベースラインモデルより20%優れ,非解釈可能なアンサンブルモデルに匹敵する精度が得られることを示す。
論文 参考訳(メタデータ) (2023-05-31T13:25:26Z) - Online machine-learning forecast uncertainty estimation for sequential
data assimilation [0.0]
予測の不確実性の定量化は、最先端の数値予測とデータ同化システムの重要な側面である。
本研究では、状態依存予測の不確実性を推定する畳み込みニューラルネットワークに基づく機械学習手法を提案する。
ハイブリッドデータ同化法は,アンサンブルが比較的小さい場合に,アンサンブルカルマンフィルタと同等の性能を示す。
論文 参考訳(メタデータ) (2023-05-12T19:23:21Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - On Learning Prediction-Focused Mixtures [30.338543175315507]
本稿では、予測タスクに関連する次元を自動的に選択する混合物の予測中心モデルを提案する。
提案手法は,入力からの関連信号を特定し,予測に焦点を絞らず,最適化が容易なモデルより優れている。
論文 参考訳(メタデータ) (2021-10-25T19:14:36Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
本研究では,実験プロセスから適切なモデル構造を自動的に抽出するデータ駆動型手法を提案する。
簡単なベンチマーク問題に対して,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-10-07T18:23:14Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
より長い地平線で安定的に予測するために, 状態作用データに対する教師付き学習のための新しいパラメータ化を提案する。
シミュレーションおよび実験によるロボット作業の結果,軌道に基づくモデルにより,より正確な長期予測が得られた。
論文 参考訳(メタデータ) (2020-12-16T18:47:37Z) - Video Prediction via Example Guidance [156.08546987158616]
ビデオ予測タスクでは、将来のコンテンツとダイナミクスのマルチモーダルな性質を捉えることが大きな課題である。
本研究では,有効な将来状態の予測を効果的に行うための,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:57:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。