EVGen: Adversarial Networks for Learning Electric Vehicle Charging Loads
and Hidden Representations
- URL: http://arxiv.org/abs/2108.03762v1
- Date: Mon, 9 Aug 2021 00:23:47 GMT
- Title: EVGen: Adversarial Networks for Learning Electric Vehicle Charging Loads
and Hidden Representations
- Authors: Robert Buechler, Emmanuel Balogun, Arun Majumdar and Ram Rajagopal
- Abstract summary: We develop generative adversarial networks (GANs) to learn of electric vehicle (EV) charging sessions and disentangled representations.
We show that this model structure successfully parameterizes unlabeled temporal and power patterns without supervision and is able to generate synthetic data conditioned on these parameters.
- Score: 4.273017002805776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nexus between transportation, the power grid, and consumer behavior is
more pronounced than ever before as the race to decarbonize the transportation
sector intensifies. Electrification in the transportation sector has led to
technology shifts and rapid deployment of electric vehicles (EVs). The
potential increase in stochastic and spatially heterogeneous charging load
presents a unique challenge that is not well studied, and will have significant
impacts on grid operations, emissions, and system reliability if not managed
effectively. Realistic scenario generators can help operators prepare, and
machine learning can be leveraged to this end. In this work, we develop
generative adversarial networks (GANs) to learn distributions of electric
vehicle (EV) charging sessions and disentangled representations. We show that
this model structure successfully parameterizes unlabeled temporal and power
patterns without supervision and is able to generate synthetic data conditioned
on these parameters. We benchmark the generation capability of this model with
Gaussian Mixture Models (GMMs), and empirically show that our proposed model
framework is better at capturing charging distributions and temporal dynamics.
Related papers
- Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
This paper studies the forecasting problem of multiple electric vehicle charging stations (EVCSs) in a hierarchical probabilistic manner.
For each charging station, a deep learning model based on a partial input convex neural network (PICNN) is trained to predict the day-ahead charging demand's conditional distribution.
Differentiable convex optimization layers (DCLs) are used to reconcile the scenarios sampled from the distributions to yield coherent scenarios.
arXiv Detail & Related papers (2024-11-01T03:35:04Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Communication-Efficient Design of Learning System for Energy Demand
Forecasting of Electrical Vehicles [5.704507128756151]
Machine learning applications to time series energy utilization forecasting problems are a challenging assignment due to a variety of factors.
We propose a communication-efficient time series forecasting model combining the most recent advancements in transformer architectures.
Our proposed model is shown to have parity in performance while consuming significantly lower data rates during training.
arXiv Detail & Related papers (2023-09-04T00:30:25Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Defining a synthetic data generator for realistic electric vehicle
charging sessions [6.37470346908743]
Electric vehicle (EV) charging stations have become prominent in electricity grids in the past years.
Yet, the limited availability of such EV sessions data hinders further development in these fields.
We develop a synthetic data generator for EV charging sessions.
arXiv Detail & Related papers (2022-02-28T11:18:40Z) - A Deep Learning Approach for Macroscopic Energy Consumption Prediction
with Microscopic Quality for Electric Vehicles [0.0]
This paper presents a machine learning approach to model the electric consumption of electric vehicles at macroscopic level.
We show that although all internal dynamics that affect energy consumption are masked, it is possible to learn aggregate-level energy consumption values quite accurately.
This model has been deployed and integrated within POLARIS Transportation System Simulation Tool to support real-time behavioral transportation models.
arXiv Detail & Related papers (2021-11-25T01:20:32Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Knowledge- and Data-driven Services for Energy Systems using Graph
Neural Networks [0.9809636731336702]
We propose a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs)
The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality.
Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services.
arXiv Detail & Related papers (2021-03-12T13:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.