論文の概要: Parallel time integration using Batched BLAS (Basic Linear Algebra
Subprograms) routines
- arxiv url: http://arxiv.org/abs/2108.07126v1
- Date: Mon, 16 Aug 2021 14:49:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-18 07:30:26.060784
- Title: Parallel time integration using Batched BLAS (Basic Linear Algebra
Subprograms) routines
- Title(参考訳): BLAS (Basic Linear Algebra Sub programss) ルーチンを用いた並列時間統合
- Authors: Konstantin Herb and Pol Welter
- Abstract要約: 量子システムの時間進化を統合するためのアプローチを提案する。
我々は、グラフィックス処理ユニット(GPU)の計算能力を活用し、全ての時間ステップを並列に統合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present an approach for integrating the time evolution of quantum systems.
We leverage the computation power of graphics processing units (GPUs) to
perform the integration of all time steps in parallel. The performance boost is
especially prominent for small to medium-sized quantum systems. The devised
algorithm can largely be implemented using the recently-specified batched
versions of the BLAS routines, and can therefore be easily ported to a variety
of platforms. Our PARAllelized Matrix Exponentiation for Numerical Time
evolution (PARAMENT) implementation runs on CUDA-enabled graphics processing
units.
- Abstract(参考訳): 量子システムの時間進化を統合するためのアプローチを提案する。
我々は、グラフィックス処理ユニット(GPU)の計算能力を活用し、全ての時間ステップを並列に統合する。
パフォーマンス向上は、中小規模の量子システムにおいて特に顕著である。
考案されたアルゴリズムは、最近発表されたBLASルーチンのバッチバージョンを使って実装することができ、様々なプラットフォームに容易に移植できる。
数値時間進化のためのPARAllelized Matrix Exponentiation (PARAMENT) の実装はCUDA対応のグラフィックス処理ユニットで動作する。
関連論文リスト
- Unlocking Real-Time Fluorescence Lifetime Imaging: Multi-Pixel Parallelism for FPGA-Accelerated Processing [2.369919866595525]
FPGAベースのハードウェアアクセラレーターを用いてリアルタイムFLIを実現する手法を提案する。
我々は、時間分解カメラと互換性のあるFPGAボード上に、GRUベースのシーケンス・ツー・シーケンス(Seq2Seq)モデルを実装した。
GRUベースのSeq2Seqモデルと、Seq2SeqLiteと呼ばれる圧縮されたバージョンを統合することで、複数のピクセルを並列に処理することができ、シーケンシャル処理と比較して遅延を低減できた。
論文 参考訳(メタデータ) (2024-10-09T18:24:23Z) - Optimised Hybrid Classical-Quantum Algorithm for Accelerated Solution of Sparse Linear Systems [0.0]
本稿では, 疎線形系をより効率的に解くために, プレコンディショニング手法とHHLアルゴリズムを組み合わせるハイブリッド古典量子アルゴリズムを提案する。
提案手法は,高速化とスケーラビリティにおいて従来の手法を超越するだけでなく,量子アルゴリズムの本質的な制約を緩和することを示す。
論文 参考訳(メタデータ) (2024-10-03T11:36:14Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
我々は、大規模なSDPを解くための、証明可能な正確で高速でスケーラブルなアルゴリズムであるUnified Spectral Bundling with Sketching (USBS)を提案する。
USBSは、20億以上の決定変数を持つインスタンス上で、最先端のスケーラブルなSDP解決器よりも500倍のスピードアップを提供する。
論文 参考訳(メタデータ) (2023-12-19T02:27:22Z) - Two dimensional quantum lattice models via mode optimized hybrid CPU-GPU density matrix renormalization group method [0.0]
2つの空間次元量子格子モデル上で量子多体問題をシミュレートするためのハイブリッド数値計算手法を提案する。
本研究では, 2次元スピンレスフェルミオンモデルと, トーラス幾何学上のハバードモデルについて, 計算時間における数桁の大きさを節約できることを実証する。
論文 参考訳(メタデータ) (2023-11-23T17:07:47Z) - Decreasing the Computing Time of Bayesian Optimization using
Generalizable Memory Pruning [56.334116591082896]
本稿では,任意のサロゲートモデルと取得関数で使用可能なメモリプルーニングとバウンダリ最適化のラッパーを示す。
BOを高次元または大規模データセット上で実行することは、この時間の複雑さのために難解になる。
すべてのモデル実装はMIT Supercloudの最先端コンピューティングハードウェア上で実行される。
論文 参考訳(メタデータ) (2023-09-08T14:05:56Z) - Parallel hybrid quantum-classical machine learning for kernelized
time-series classification [0.0]
本稿では,時間系列ハミルトニアン(TSHK)アルゴリズムを用いて,ペアインスタンス間の時間的時間差を推定するハイブリッド量子古典機械に挑戦する。
カーネル重み付けステップを微分可能な微分可能なカーネル関数として扱うため、本手法はエンドラージ可能なハイブリッド量子系列技術とみなすことができる。
論文 参考訳(メタデータ) (2023-05-10T04:01:15Z) - GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access [71.58925117604039]
非直交多重アクセス(Noma)は、将来の5Gおよび6Gネットワークに必要な大規模な接続を可能にする興味深い技術である。
線形処理と非線形処理の両方の利点を組み合わせたニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-13T09:38:23Z) - Efficient GPU implementation of randomized SVD and its applications [17.71779625877989]
行列分解は、次元データの圧縮やディープラーニングアルゴリズムなど、機械学習においてユビキタスである。
行列分解の典型的な解は、計算コストと時間を大幅に増大させる複雑さを持つ。
我々は,計算行列分解の計算負担を軽減するために,現代のグラフィカル処理ユニット(GPU)で並列に動作する効率的な処理操作を利用する。
論文 参考訳(メタデータ) (2021-10-05T07:42:41Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z) - Photonic co-processors in HPC: using LightOn OPUs for Randomized
Numerical Linear Algebra [53.13961454500934]
従来のハードウェアでは,次元削減のためのランダム化ステップ自体が計算ボトルネックとなる可能性がある。
ランダム化は,様々な重要なrandnlaアルゴリズムにおいて,精度損失が無視できないほど大幅に高速化できることを示す。
論文 参考訳(メタデータ) (2021-04-29T15:48:52Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。